scholarly journals Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults

2016 ◽  
Vol 4 (13) ◽  
pp. e12849 ◽  
Author(s):  
Kyle D. Flack ◽  
Brenda M. Davy ◽  
Martin DeBerardinis ◽  
Nabil E. Boutagy ◽  
Ryan P. McMillan ◽  
...  
2018 ◽  
Vol 103 ◽  
pp. 101-106 ◽  
Author(s):  
Ciriaco Carru ◽  
Mariasole Da Boit ◽  
Panagiotis Paliogiannis ◽  
Angelo Zinellu ◽  
Salvatore Sotgia ◽  
...  

2019 ◽  
Vol 127 ◽  
pp. 110723 ◽  
Author(s):  
Tatiana Moro ◽  
Camille R. Brightwell ◽  
Danielle E. Phalen ◽  
Colleen F. McKenna ◽  
Samantha J. Lane ◽  
...  

2009 ◽  
Vol 34 (3) ◽  
pp. 348-354 ◽  
Author(s):  
M. A. Tarnopolsky

Aging is associated with a reduction in muscle mass and strength, which compromises functional independence. Skeletal muscle also shows an increase in mitochondrial dysfunction and oxidative stress in older adults. Resistance-exercise training is an important countermeasure for aging-associated muscle weakness. It has been shown that resistance-exercise training increases muscle strength and function in older adults, in association with a reduction in markers of oxidative stress and an improvement in mitochondrial function. Patients with sporadic mitochondrial cytopathies show an accumulation of mitochondrial DNA mutations and deletions in mature muscle, but not in satellite cells. Such patients have shown an activation of the satellite cells following myotoxic trauma and resistance, likely due to a fusion of the relatively quiescent satellite cells with mature muscle, which dilutes the mutational burden, a process called mitochondrial DNA shifting. Preliminary data strongly suggest that mitochondrial DNA shifting occurs in skeletal muscle from older adults following resistance-exercise training.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 529-529
Author(s):  
Amanda Randolph ◽  
Tatiana Moro ◽  
Adetutu Odejimi ◽  
Blake Rasmussen ◽  
Elena Volpi

Abstract Type 2 Diabetes Mellitus (T2DM) accelerates the incidence and increases the prevalence of sarcopenia in older adults. This suggests an urgent need for identifying effective sarcopenia treatments for older adults with T2DM. It is unknown whether traditional approaches, such as progressive resistance exercise training (PRET), can effectively counteract sarcopenia in older patients with T2DM. To test the efficacy of PRET for the treatment of sarcopenia in older adults with T2DM, 30 subjects (15 T2DM and 15 age- and sex- matched controls) underwent metabolic testing with muscle biopsies before and after a 13-week full-body PRET program. Primary outcome measures included changes in appendicular lean mass, muscle strength, and mixed muscle fractional synthesis rate (FSR). Before PRET, BMI-adjusted appendicular lean mass was significantly lower in the T2DM group (0.7095±0.0381 versus 0.8151±0.0439, p<0.0001). As a result of PRET, appendicular lean mass adjusted for BMI and muscle strength increased significantly in both groups, but to a lesser extent for the T2DM group (p=0.0009) . Preliminary results for FSR (n=25) indicate that subjects with T2DM had lower basal FSR prior to PRET (p=0.0197) . Basal FSR increased significantly in the control group after PRET (p=0.0196), while it did not change in the T2DM group (p=0.3537). These results suggest that in older adults the positive effect of PRET on muscle anabolism and strength is reduced by T2DM . Thus, older adults with T2DM may require more intensive, multimodal and targeted sarcopenia treatment. Funded by NIH R01AG049611 and P30AG024832.


2013 ◽  
Vol 33 (5) ◽  
pp. 349-357 ◽  
Author(s):  
Vanessa M. Kobza ◽  
James C. Fleet ◽  
Jing Zhou ◽  
Travis B. Conley ◽  
Munro Peacock ◽  
...  

2017 ◽  
Vol 99 ◽  
pp. 98-109 ◽  
Author(s):  
Michael J. Stec ◽  
Anna Thalacker-Mercer ◽  
David L. Mayhew ◽  
Neil A. Kelly ◽  
S. Craig Tuggle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document