scholarly journals The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice

2018 ◽  
Vol 6 (20) ◽  
pp. e13881 ◽  
Author(s):  
Nina Brandt ◽  
Dorota Kotowska ◽  
Caroline M. Kristensen ◽  
Jesper Olesen ◽  
Ditte O. Lützhøft ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Juan Li ◽  
Qian Hu ◽  
Dai Xiao-yu ◽  
Lv Zhu ◽  
Yi-fan Miao ◽  
...  

Background and Aims. Nonalcoholic fatty liver disease (NAFLD) is an alarming global health problem that is predicted to be the major cause of cirrhosis, hepatocellular carcinoma, and liver transplantation by next decade. Gut microbiota have been revealed playing an important role in the pathogenesis of NAFLD. Sheng-Jiang Powder (SJP), an empirical Chinese medicine formula to treat NAFLD, showed great hepatoprotective properties, but the impact on gut microbiota has never been identified. Therefore, we performed this study to investigate the effect of SJP on gut microbiota in NAFLD mice. Methods. NAFLD was induced by 12 weeks’ high-fat diet (HFD) feeding. Mice were treated with SJP/normal saline daily for 6 weeks. Blood samples were obtained for serum biochemical indices and inflammatory cytokines measurement. Liver tissues were obtained for pathological evaluation and oil red O staining. The expression of lipid metabolism-related genes was quantified by RT-PCR and Western blotting. Changes in gut microbiota composition were analyzed by the 16s rDNA sequencing technique. Results. HFD feeding induced significant increase in bodyweight and serum levels of TG, TC, ALT, and AST. The pathological examination revealed obvious hepatic steatosis in HFD feeding mice. Coadministration of SJP effectively protected against bodyweight increase and lipid accumulation in blood and liver. Increased expression of PPARγ mRNA was observed in HFD feeding mice, but a steady elevation of PPARγ protein level was only found in SJP-treated mice. Meanwhile, the expression of FASN was much higher in HFD feeding mice. Microbiome analysis revealed obvious changes in gut microbiota composition among diverse groups. SJP treatment modulated the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, including norank-f-Erysipelotrichaceae and Roseburia. Conclusions. SJP is efficient in attenuating HFD-induced NAFLD, and it might be partly attributed to the regulation of gut microbiota.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1792
Author(s):  
Alicia Huazano-García ◽  
María Blanca Silva-Adame ◽  
Juan Vázquez-Martínez ◽  
Argel Gastelum-Arellanez ◽  
Lino Sánchez-Segura ◽  
...  

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1β, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.


2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2019 ◽  
Vol 10 (2) ◽  
pp. 775-785 ◽  
Author(s):  
Xiang Li ◽  
Huali Wang ◽  
Tianxin Wang ◽  
Fuping Zheng ◽  
Hao Wang ◽  
...  

Wood pulp-derived sterols (WS) supplementation ameliorated HFD-associated metabolic disorder; WS supplementation increased the amounts of fecal sterols excretion and SCFAs content; WS supplementation modulated gut microbiota composition.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2188 ◽  
Author(s):  
Ning-Ning Zhang ◽  
Wen-Hui Guo ◽  
Han Hu ◽  
A-Rong Zhou ◽  
Qing-Pei Liu ◽  
...  

This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.


2020 ◽  
Vol 11 (2) ◽  
pp. 1624-1634 ◽  
Author(s):  
Zhenxing Shi ◽  
Yingying Zhu ◽  
Cong Teng ◽  
Yang Yao ◽  
Guixing Ren ◽  
...  

α-Amylase inhibitors (α-AI) have great potential to treat obesity.


2018 ◽  
Vol 63 (2) ◽  
pp. 1800390 ◽  
Author(s):  
Pei‐Sheng Lee ◽  
Chia‐Yi Teng ◽  
Nagabhushanam Kalyanam ◽  
Chi‐Tang Ho ◽  
Min‐Hsiung Pan

Sign in / Sign up

Export Citation Format

Share Document