The origins of the Western Scheldt. Environmental transformation, storm surges and human agency in the Flemish coastal plain (1250–1600)

Author(s):  
Tim Soens
2020 ◽  
Vol 49 (3) ◽  
pp. 546-552 ◽  
Author(s):  
Allan T Showler ◽  
Adalberto Pérez de León

Abstract Landscape features and the ecology of suitable hosts influence the phenology of invasive tick species. The southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae), vectors causal agents of babesiosis in cattle and it infests exotic, feral nilgai, Bosephalus tragocamelus Pallas, and indigenous white-tailed deer, Odocoilus virginianus (Zimmerman), on the South Texas coastal plain wildlife corridor. The corridor extends from the Mexico border to cattle ranches extending north from inside Willacy Co. Outbreaks of R. microplus infesting cattle and nondomesticated ungulate hosts since 2014 in the wildlife corridor have focused attention on host infestation management and, by extension, dispersal. However, there is a knowledge gap on the ecology of R. microplus outbreaks in the South Texas coastal plain wildlife corridor. Ixodid distribution on the wildlife corridor is strongly influenced by habitat salinity. Saline habitats, which constitute ≈25% of the wildlife corridor, harbor few ixodids because of occasional salt toxicity from hypersaline wind tides and infrequent storm surges, and from efficient egg predation by mud flat fiddler crabs, Uca rapax (Smith). Rhipicephalus microplus infestations on nilgai were more prevalent in part of the corridor with mixed low salinity and saline areas than in an area that is more extensively saline. The different levels of R. microplus infestation suggest that man-made barriers have created isolated areas where the ecology of R. microplus outbreaks involve infested nilgai. The possible utility of man-made barriers for R. microplus eradication in the lower part of the South Texas coastal plain wildlife corridor is discussed.


2015 ◽  
Vol 94 (4) ◽  
pp. 361-373 ◽  
Author(s):  
W. de Gans

AbstractThe Amstel river is located in the peat-covered coastal plain of the Netherlands and gives Amsterdam its name (Amstel dam). It is a small secondary branch of the repeatedly bifurcating Rhine delta system. Historically, the Amstel debouched into the peat-fringed former Oer-IJ estuary, which was connected to the North Sea, but after the closure of this inlet the estuary was transformed into an inland sea (IJ) due to erosion of the adjacent peat. The Amstel river was active between 3000 BP and 1122 AD after which time the supply water from the Rhine was stopped due to the construction of a dam far upstream near Wijk bij Duurstede. On the basis of borehole data from various sources, four cross-sections were constructed in the Amstel branch to study the unknown lithology and lithostratigraphy of the Amstel sediments in the Amsterdam area. The deposits show the Amstel was a low-energy river which carried mainly clay. The cross-sections reveal that the Amstel in its downstream part was flanked by two lithologically identical layers of overbank clay, intercalated by a peat layer. The lowermost overbank clay was deposited from 3000 BP to about 1000 AD. The intercalated peat layer is estimated to have developed between the 11th and 12th centuries AD, indicating a decreased sediment supply in the Amstel, and rise of water level in the downstream river caused by Zuiderzee influences such as storms and tide. The uppermost overbank clay was deposited during major storm surges such as those documented in 1164 and 1170 AD, and was derived from the brackish Zuiderzee; it has been traced upstream along the Amstel for over 10 km. Near the mouth of the Amstel channel in the Oer-IJ estuary its bottom has been scoured by estuarine processes to a lower level. On the basis of archaeological and geological data it is argued that the Amstel channel of medieval Amsterdam had a water depth of about 6 m before the construction of a dam in the 13th century. Soil scientists, historical geographers and historians have argued that the Amstel once consisted of two separate rivers: a northern Oer-IJ connected channel draining from the Amsterdam Stopera to the north, and a southern peat draining channel draining from the Amsterdam-Watergraafsmeer to the south. The relatively straight stretch of the present-day Amstel now positioned within the urban area has been hypothesised to be man-made between the 11th and 13th centuries AD. In this paper, on the basis of geological arguments such as channel depths, overbank clays, peat composition and other characteristics, it is concluded that the Amstel had a natural channel in the Amsterdam area.


2017 ◽  
Vol 61 (2) ◽  
pp. 51-68 ◽  
Author(s):  
Wolfgang Georg Weber ◽  
Hans Jeppe Jeppesen

Abstract. Connecting the social cognitive approach of human agency by Bandura (1997) and activity theory by Leontiev (1978) , this paper proposes a new theoretical framework for analyzing and understanding employee participation in organizational decision-making. Focusing on the social cognitive concepts of self-reactiveness, self-reflectiveness, intentionality, and forethought, commonalities, complementarities, and differences between both theories are explained. Efficacy in agency is conceived as a cognitive foundation of work motivation, whereas the mediation of societal requirements and resources through practical activity is conceptualized as an ecological approach to motivation. Additionally, we discuss to which degree collective objectifications can be understood as material indicators of employees’ collective efficacy. By way of example, we explore whether an integrated application of concepts from both theories promotes a clearer understanding of mechanisms connected to the practice of employee participation.


10.1029/ft172 ◽  
1989 ◽  
Author(s):  
W. Burleigh Harris ◽  
Vernon J. Hurst ◽  
Paul G. Nystrom ◽  
Lauck W. Ward ◽  
Charles W. Hoffman ◽  
...  

1991 ◽  
Vol 46 (2) ◽  
pp. 151-153 ◽  
Author(s):  
William T. Powers
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document