Unification of firefly algorithm with density-based spatial clustering for segmentation of medical images

Author(s):  
Bandana Bali ◽  
Brij Mohan Singh
Author(s):  
Badrinath Roysam ◽  
Hakan Ancin ◽  
Douglas E. Becker ◽  
Robert W. Mackin ◽  
Matthew M. Chestnut ◽  
...  

This paper summarizes recent advances made by this group in the automated three-dimensional (3-D) image analysis of cytological specimens that are much thicker than the depth of field, and much wider than the field of view of the microscope. The imaging of thick samples is motivated by the need to sample large volumes of tissue rapidly, make more accurate measurements than possible with 2-D sampling, and also to perform analysis in a manner that preserves the relative locations and 3-D structures of the cells. The motivation to study specimens much wider than the field of view arises when measurements and insights at the tissue, rather than the cell level are needed.The term “analysis” indicates a activities ranging from cell counting, neuron tracing, cell morphometry, measurement of tracers, through characterization of large populations of cells with regard to higher-level tissue organization by detecting patterns such as 3-D spatial clustering, the presence of subpopulations, and their relationships to each other. Of even more interest are changes in these parameters as a function of development, and as a reaction to external stimuli. There is a widespread need to measure structural changes in tissue caused by toxins, physiologic states, biochemicals, aging, development, and electrochemical or physical stimuli. These agents could affect the number of cells per unit volume of tissue, cell volume and shape, and cause structural changes in individual cells, inter-connections, or subtle changes in higher-level tissue architecture. It is important to process large intact volumes of tissue to achieve adequate sampling and sensitivity to subtle changes. It is desirable to perform such studies rapidly, with utmost automation, and at minimal cost. Automated 3-D image analysis methods offer unique advantages and opportunities, without making simplifying assumptions of tissue uniformity, unlike random sampling methods such as stereology.12 Although stereological methods are known to be statistically unbiased, they may not be statistically efficient. Another disadvantage of sampling methods is the lack of full visual confirmation - an attractive feature of image analysis based methods.


2014 ◽  
Author(s):  
Helen C. Harton ◽  
Peng Zhang ◽  
Nicholas Terpstra-Schwab ◽  
Brooke Ammerman

2020 ◽  
Vol 39 (3) ◽  
pp. 3259-3273
Author(s):  
Nasser Shahsavari-Pour ◽  
Najmeh Bahram-Pour ◽  
Mojde Kazemi

The location-routing problem is a research area that simultaneously solves location-allocation and vehicle routing issues. It is critical to delivering emergency goods to customers with high reliability. In this paper, reliability in location and routing problems was considered as the probability of failure in depots, vehicles, and routs. The problem has two objectives, minimizing the cost and maximizing the reliability, the latter expressed by minimizing the expected cost of failure. First, a mathematical model of the problem was presented and due to its NP-hard nature, it was solved by a meta-heuristic approach using a NSGA-II algorithm and a discrete multi-objective firefly algorithm. The efficiency of these algorithms was studied through a complete set of examples and it was found that the multi-objective discrete firefly algorithm has a better Diversification Metric (DM) index; the Mean Ideal Distance (MID) and Spacing Metric (SM) indexes are only suitable for small to medium problems, losing their effectiveness for big problems.


EMJ Radiology ◽  
2020 ◽  
Author(s):  
Filippo Pesapane

Radiomics is a science that investigates a large number of features from medical images using data-characterisation algorithms, with the aim to analyse disease characteristics that are indistinguishable to the naked eye. Radiogenomics attempts to establish and examine the relationship between tumour genomic characteristics and their radiologic appearance. Although there is certainly a lot to learn from these relationships, one could ask the question: what is the practical significance of radiogenomic discoveries? This increasing interest in such applications inevitably raises numerous legal and ethical questions. In an environment such as the technology field, which changes quickly and unpredictably, regulations need to be timely in order to be relevant.  In this paper, issues that must be solved to make the future applications of this innovative technology safe and useful are analysed.


Author(s):  
Chauhan Usha ◽  
Singh Rajeev Kumar

Digital Watermarking is a technology, to facilitate the authentication, copyright protection and Security of digital media. The objective of developing a robust watermarking technique is to incorporate the maximum possible robustness without compromising with the transparency. Singular Value Decomposition (SVD) using Firefly Algorithm provides this objective of an optimal robust watermarking technique. Multiple scaling factors are used to embed the watermark image into the host by multiplying these scaling factors with the Singular Values (SV) of the host image. Firefly Algorithm is used to optimize the modified host image to achieve the highest possible robustness and transparency. This approach can significantly increase the quality of watermarked image and provide more robustness to the embedded watermark against various attacks such as noise, geometric attacks, filtering attacks etc.


Sign in / Sign up

Export Citation Format

Share Document