scholarly journals Plastic deformation and microstructure evolution of bearing ring blank during cold rolling process

Author(s):  
Song Deng ◽  
Lin Hua
2010 ◽  
Vol 154-155 ◽  
pp. 191-196 ◽  
Author(s):  
Zhi Qi Liu ◽  
Jian Li Song ◽  
Yong Tang Li ◽  
Xu Dong Li ◽  
Ming Fu Wang

Cold rolling precision forming process of spline is one of the high-efficiency, precision and non-chip forming advanced manufacturing technologies. It has the characteristics such as high forming efficiency, energy-saving, low material consumption and better forming properties of components. The principle and the force of involute spline cold rolling precision forming process were analyzed. Forming experiments of involute spline cold rolling were carried out, and the microhardness map of the tooth outline was gained. The rule of the metal flow in the deforming area and the forming mechanics of the microstructure were analyzed. The influence of plastic deformation on the forming properties was also conducted. Experimental results showed that dramatic plastic deformation has taken place on the upper surface of the workpiece during the cold rolling process of spline, while the influence on the inner materials were very small. The grains were distributed as a flow line pattern along the tooth profile, and the grains in the plastic deformation zone presented a fine and long fibrous state. The hardness on the section of the tooth outline is regularly distributed. Compared with the spline components obtained from conventional cutting method, the hardness of the spline was greatly increased, therefore, comprehensive mechanical property such as wear resistance and impact resistance were largely improved. Precision measuring and hardness testing of the tooth outline section showed that the components obtained by the experiments were free of defects, and the application requirement can be satisfied.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1514
Author(s):  
Ali Akbarpour ◽  
Daria A. Milkova ◽  
Erzhena N. Zanaeva ◽  
Mark S. Parkhomenko ◽  
Vladimir V. Cheverikin ◽  
...  

Cold rolling (CR) with thickness reduction of 10%, 30%, and 50% was applied to Zr50Cu44Al6 and Zr49.5Cu44Al6Nb0.5 metallic glassy ribbon samples. The XRD patterns showed the amorphousness of all samples after casting and CR processes. The SEM images indicated the formation of multiple shear bands (SBs) owing to plastic deformation during CR. However, the addition of 0.5 at% Nb to the alloy changed the SBs’ density and spacing characteristics. The characterization of free volume changes caused by CR was carried out by measuring the density of Archimedes. The micro-hardness of samples was studied by investigating SBs and free volume during plastic deformation. Alloy softening occurred due to the formation of free volume during CR. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxides ZrO2, CuOx, and AlOx on the surface of the ribbons. The anodic polarization curves of the cast and R50 samples in solutions of NaCl and Na2SO4 (0.5 M) were obtained using potentiodynamic polarization measurements. Compared to CR ribbons, melt-spun ribbons after casting showed better corrosion resistance with lower anodic current densities in Na2SO4 solution.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 783 ◽  
Author(s):  
Hongbo Li ◽  
Zhenwei Zhao ◽  
Dawei Dong ◽  
Guomin Han ◽  
Jie Zhang ◽  
...  

Edge-drop control is important for silicon strip cold rolling, as the silicon strip is mainly used as a laminated core. Moreover, cold rolling is the key process for the thin strip edge-drop control, and a Sendzimir mill is one of the most popular cold rolling mills for silicon strips. Thus, the mastery of edge-drop control behavior for silicon strip cold rolling with a Sendzimir mill is beneficial for the improvement of the strip profile quality. With the finite element method, two models are built to analyze the edge-drop control behavior, one is the roll system and strip integrated elastic-plastic deformation statics model, and the other is the strip plastic deformation dynamics model. The first model provides the roll gap contour for the second model, then the strip profile can be calculated in the second model, which considers the transverse flow of the metal. Firstly, the compositions of edge-drop for the silicon strip are analyzed systematically, which are the edge-drop for work roll bending, the edge-drop for work roll flattening, and the edge-drop for transverse flow of the metal. Secondly, the influence of different rolling process parameters on the three parts are analyzed, such as the entrance thickness, the rolling reduction, the rolling tension, and so on; further, the influence of the roll contours are also analyzed. Finally, the edge-drop control behavior of the different rolling process parameters and roll contours are obtained. The research results provide theoretical guidance for edge drop control in the Sendzimir mill.


2017 ◽  
Vol 267 ◽  
pp. 45-51
Author(s):  
Sinan Sezek ◽  
Bunyamin Aksakal

In this study, temperature distribution that occurred during cold and hot rolling of AA5454-O alloy has been investigated. Temperature variation taking place in the aluminium alloy that has undergone plastic deformation between the rollers during hot and cold rolling process is of major importance in terms of determining the positive and negative characteristics or features which such temperature variation adds to the formation of the internal structure of the material concerned. Temperature distribution has been measured by use of the installed laboratory equipment and respective data recorded has been presented in the form of graphic charts. Temperature distribution has varied depending on the application of hot or cold rolling process and it has been noted that variations in terms of temperature reduction took place depending on the number of roll passes. While average temperature variation has occurred as a 16°C increase in the case of cold rolling, it has been observed that such variation appeared as a 100°C decrease on the average in the case of hot rolling.


2017 ◽  
Vol 888 ◽  
pp. 409-412 ◽  
Author(s):  
Syarifah M. Noraini Sayed Ahmad ◽  
Zuhailawati Hussain ◽  
Anasyida Abu Seman

Cryorolling is indeed a very suitable approach in producing a good Al alloy of Al 5083 with exceptionally strong and hard properties. This new Severe Plastic Deformation (SPD) methods can bring out the utmost of strength in Al alloy compare with cold rolling. This paper hence discussed the effect of dipping duration of Al alloy in liquid nitrogen prior to rolling process to its improved mechanical properties such as hardness and tensile strength. The result showed that the hardness increased with increasing dipping time until 60 minutes for low temperature pre-anneal and 30 minutes for high temperature pre-anneal and later dropped. The tensile strength of cryorolled sample also showed some improvement for about 5-8% compared with normal cold rolling.


Sign in / Sign up

Export Citation Format

Share Document