Grain Refinement-Plastic Deformation -Texture of Bearing Ring Blank in Cold Ring Rolling

2017 ◽  
Vol 06 (03) ◽  
Author(s):  
Song Deng ◽  
Huajie Mao ◽  
Dafang Shi
2011 ◽  
Vol 291-294 ◽  
pp. 297-305
Author(s):  
Li Bo Pan ◽  
Lin Hua ◽  
Dong Sheng Qian

Cold ring rolling is a kind of advanced manufacturing technology. During rolling process the ring may be collapsed or deformed unexpectedly under the pressure of guide roll because the stiffness condition is not met. The force of guide roll to ring was obtained by analyzing the forces to ring. The stiffness condition expressions of ring during rolling were shown after constructing the mechanical model. According to the expressions, the effects of several parameters on the stiffness condition were discussed and analyzed in detail, such as position angle of guide roll, friction coefficient and feed rate, etc, which revealed essential reasons of some cases occurring in cold ring rolling. Then the ring blank dimension was deduced based on the ring stiffness condition. The dimensions of ring blank should meet a relationship to ensure the ring stiffness condition to be satisfied during rolling, which can conduct the practical manufacturing effectively. Finally the analysis and effect laws were proved by finite element simulation experiments. The researches could be helpful to control parameter in cold ring rolling effectively for high quality products.


2015 ◽  
Vol 1114 ◽  
pp. 143-148
Author(s):  
Nicolae Serban ◽  
Doina Răducanu ◽  
Vasile Danut Cojocaru ◽  
Nicolae Ghiban

Severe plastic deformation (SPD) has received enormous interest over the last two decades as a method capable of producing fully dense and bulk ultra-fine grained (UFG) and nanocrystalline (NC) materials. Significant grain refinement obtained by SPD leads to improvement of mechanical, microstructural and physical properties. Compared to classical deformation processes, the big advantage of SPD manufacturing techniques, represented in particular by equal channel angular pressing (ECAP) is the lack of shape-change deformation and the consequent possibility to impart extremely large strain. In ECAP processing, the workpiece is pressed through a die in which two channels of equal cross-section intersect at an angle of ϕ and an additional angle of ψ define the arc of curvature at the outer point of intersection of the two channels. As a result of pressing, the sample theoretically deforms by simple shear and retains the same cross-sectional area to allow repeated pressings for several cycles. A commercial AlMgSi alloy was investigated in our study. The specimens were processed at room temperature for multiple passes, using three different ECAP dies. All samples (ECAP processed and as-received) were subjected to metallographic analysis and mechanical testing. Several correlations between the main processing parameters and the resulting microstructural aspect and mechanical features for the processed material were established. It was shown that severe plastic deformation by means of ECAP processing can be used in aluminum alloys microstructural design as an advanced tool for grain refinement in order to attain the desired microstructure and mechanical properties.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Intan Fadhlina Mohamed ◽  
Seungwon Lee ◽  
Kaveh Edalati ◽  
Zenji Horita ◽  
Shahrum Abdullah ◽  
...  

This work presents a study related to the grain refinement of an aluminum A2618 alloy achieved by High-Pressure Torsion (HPT) known as a process of Severe Plastic Deformation (SPD). The HPT is conducted on disks of the alloy under an applied pressure of 6 GPa for 1 and 5 turns with a rotation speed of 1 rpm at room temperature. The HPT processing leads to microstructural refinement with an average grain size of ~250 nm at a saturation level after 5 turns. Gradual increases in hardness are observed from the beginning of straining up to a saturation level. This study thus suggests that hardening due to grain refinement is attained by the HPT processing of the A2618 alloy at room temperature.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


Sign in / Sign up

Export Citation Format

Share Document