Prediction of DNA-binding residues from sequence information using convolutional neural network

2017 ◽  
Vol 17 (2) ◽  
pp. 132
Author(s):  
Hongpeng Wang ◽  
Lin Gui ◽  
Qin Lu ◽  
Ruifeng Xu ◽  
Jiyun Zhou
2021 ◽  
Vol 22 (11) ◽  
pp. 5521
Author(s):  
Lei Deng ◽  
Hui Wu ◽  
Xuejun Liu ◽  
Hui Liu

Predicting in vivo protein–DNA binding sites is a challenging but pressing task in a variety of fields like drug design and development. Most promoters contain a number of transcription factor (TF) binding sites, but only a small minority has been identified by biochemical experiments that are time-consuming and laborious. To tackle this challenge, many computational methods have been proposed to predict TF binding sites from DNA sequence. Although previous methods have achieved remarkable performance in the prediction of protein–DNA interactions, there is still considerable room for improvement. In this paper, we present a hybrid deep learning framework, termed DeepD2V, for transcription factor binding sites prediction. First, we construct the input matrix with an original DNA sequence and its three kinds of variant sequences, including its inverse, complementary, and complementary inverse sequence. A sliding window of size k with a specific stride is used to obtain its k-mer representation of input sequences. Next, we use word2vec to obtain a pre-trained k-mer word distributed representation model. Finally, the probability of protein–DNA binding is predicted by using the recurrent and convolutional neural network. The experiment results on 50 public ChIP-seq benchmark datasets demonstrate the superior performance and robustness of DeepD2V. Moreover, we verify that the performance of DeepD2V using word2vec-based k-mer distributed representation is better than one-hot encoding, and the integrated framework of both convolutional neural network (CNN) and bidirectional LSTM (bi-LSTM) outperforms CNN or the bi-LSTM model when used alone. The source code of DeepD2V is available at the github repository.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chun-Miao Yuan ◽  
Xue-Mei Sun ◽  
Hu Zhao

Speech information is the most important means of human communication, and it is crucial to separate the target voice from the mixed sound signals. This paper proposes a speech separation model based on convolutional neural networks and attention mechanism. The magnitude spectrum of the mixed speech signals, as the input, has its high dimensionality. By analyzing the characteristics of the convolutional neural network and attention mechanism, it can be found that the convolutional neural network can effectively extract low-dimensional features and mine the spatiotemporal structure information in the speech signals, and the attention mechanism can reduce the loss of sequence information. The accuracy of speech separation can be improved effectively by combining two mechanisms. Compared to the typical speech separation model DRNN-2 + discrim, this method achieves 0.27 dB GNSDR gain and 0.51 dB GSIR gain, which illustrates that the speech separation model proposed in this paper has achieved an ideal separation effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rahu Sikander ◽  
Yuping Wang ◽  
Ali Ghulam ◽  
Xianjuan Wu

Predicting the protein sequence information of enzymes and non-enzymes is an important but a very challenging task. Existing methods use protein geometric structures only or protein sequences alone to predict enzymatic functions. Thus, their prediction results are unsatisfactory. In this paper, we propose a novel approach for predicting the amino acid sequences of enzymes and non-enzymes via Convolutional Neural Network (CNN). In CNN, the roles of enzymes are predicted from multiple sides of biological information, including information on sequences and structures. We propose the use of two-dimensional data via 2DCNN to predict the proteins of enzymes and non-enzymes by using the same fivefold cross-validation function. We also use an independent dataset to test the performance of our model, and the results demonstrate that we are able to solve the overfitting problem. We used the CNN model proposed herein to demonstrate the superiority of our model for classifying an entire set of filters, such as 32, 64, and 128 parameters, with the fivefold validation test set as the independent classification. Via the Dipeptide Deviation from Expected Mean (DDE) matrix, mutation information is extracted from amino acid sequences and structural information with the distance and angle of amino acids is conveyed. The derived feature maps are then encoded in DDE exploitation. The independent datasets are then compared with other two methods, namely, GRU and XGBOOST. All analyses were conducted using 32, 64 and 128 filters on our proposed CNN method. The cross-validation datasets achieved an accuracy score of 0.8762%, whereas the accuracy of independent datasets was 0.7621%. Additional variables were derived on the basis of ROC AUC with fivefold cross-validation was achieved score is 0.95%. The performance of our model and that of other models in terms of sensitivity (0.9028%) and specificity (0.8497%) was compared. The overall accuracy of our model was 0.9133% compared with 0.8310% for the other model.


BMC Genomics ◽  
2009 ◽  
Vol 10 (Suppl 1) ◽  
pp. S1 ◽  
Author(s):  
Liangjiang Wang ◽  
Mary Yang ◽  
Jack Y Yang

Sign in / Sign up

Export Citation Format

Share Document