scholarly journals Human activity recognition based on mobile phone sensor data using stacking machine learning classifiers

Author(s):  
Vali Tawosi ◽  
Mahsa Soufineyestani ◽  
Hedieh Sajedi
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1858 ◽  
Author(s):  
Dionicio Neira-Rodado ◽  
Chris Nugent ◽  
Ian Cleland ◽  
Javier Velasquez ◽  
Amelec Viloria

Human activity recognition (HAR) is a popular field of study. The outcomes of the projects in this area have the potential to impact on the quality of life of people with conditions such as dementia. HAR is focused primarily on applying machine learning classifiers on data from low level sensors such as accelerometers. The performance of these classifiers can be improved through an adequate training process. In order to improve the training process, multivariate outlier detection was used in order to improve the quality of data in the training set and, subsequently, performance of the classifier. The impact of the technique was evaluated with KNN and random forest (RF) classifiers. In the case of KNN, the performance of the classifier was improved from 55.9% to 63.59%.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-17
Author(s):  
Chenglin Li ◽  
Carrie Lu Tong ◽  
Di Niu ◽  
Bei Jiang ◽  
Xiao Zuo ◽  
...  

Deep learning models for human activity recognition (HAR) based on sensor data have been heavily studied recently. However, the generalization ability of deep models on complex real-world HAR data is limited by the availability of high-quality labeled activity data, which are hard to obtain. In this article, we design a similarity embedding neural network that maps input sensor signals onto real vectors through carefully designed convolutional and Long Short-Term Memory (LSTM) layers. The embedding network is trained with a pairwise similarity loss, encouraging the clustering of samples from the same class in the embedded real space, and can be effectively trained on a small dataset and even on a noisy dataset with mislabeled samples. Based on the learned embeddings, we further propose both nonparametric and parametric approaches for activity recognition. Extensive evaluation based on two public datasets has shown that the proposed similarity embedding network significantly outperforms state-of-the-art deep models on HAR classification tasks, is robust to mislabeled samples in the training set, and can also be used to effectively denoise a noisy dataset.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 111
Author(s):  
Pengjia Tu ◽  
Junhuai Li ◽  
Huaijun Wang ◽  
Ting Cao ◽  
Kan Wang

Human activity recognition (HAR) has vital applications in human–computer interaction, somatosensory games, and motion monitoring, etc. On the basis of the human motion accelerate sensor data, through a nonlinear analysis of the human motion time series, a novel method for HAR that is based on non-linear chaotic features is proposed in this paper. First, the C-C method and G-P algorithm are used to, respectively, compute the optimal delay time and embedding dimension. Additionally, a Reconstructed Phase Space (RPS) is formed while using time-delay embedding for the human accelerometer motion sensor data. Subsequently, a two-dimensional chaotic feature matrix is constructed, where the chaotic feature is composed of the correlation dimension and largest Lyapunov exponent (LLE) of attractor trajectory in the RPS. Next, the classification algorithms are used in order to classify and recognize the two different activity classes, i.e., basic and transitional activities. The experimental results show that the chaotic feature has a higher accuracy than traditional time and frequency domain features.


Sign in / Sign up

Export Citation Format

Share Document