Biotechnological approach for ecosystem restoration of mine spoil dump in India

2010 ◽  
Vol 43 (1/2/3) ◽  
pp. 251 ◽  
Author(s):  
Asha A. Juwarkar ◽  
Santosh Kumar Yadav ◽  
Prashant R. Thawale
2008 ◽  
Vol 99 (11) ◽  
pp. 4732-4741 ◽  
Author(s):  
Asha A. Juwarkar ◽  
Hemlata P. Jambhulkar

Shore & Beach ◽  
2020 ◽  
pp. 102-109
Author(s):  
Syed Khalil ◽  
Beth Forrest ◽  
Mike Lowiec ◽  
Beau Suthard ◽  
Richard Raynie ◽  
...  

The System Wide Assessment and Monitoring Program (SWAMP) was implemented by the Louisiana Coastal Protection and Restoration Authority (CPRA) to develop an Adaptive Management Implementation Plan (AMIP). SWAMP ensures that a comprehensive network of coastal data collection/monitoring activities is in place to support the development and implementation of Louisiana’s coastal protection and restoration program. Monitoring of physical terrain is an important parameter of SWAMP. For the first time a systematic approach was adopted to undertake a geophysical (bathymetric, side-scan sonar, sub-bottom profile, and magnetometer) survey along more than 5,000 nautical miles (nm) (excluding the 1,559 nm currently being surveyed from west of Terrebonne Bay to Sabine Lake) of track-line in almost all of the bays and lakes from Chandeleur Sound in the east to Terrebonne Bay in the west. This data collection effort complements the regional bathymetric survey undertaken under the Barrier Island Comprehensive Monitoring (BICM) Program in the adjacent offshore areas. This paper describes how a study of this magnitude was conceptualized, planned, and executed along the entire Louisiana coast. It is important to note that the initial intent was to collect bathymetric data only for numerical modelling for ecosystem restoration and storm surge prediction. Geophysical data were added for oyster identification and delineation. These first-order data also help comprehend the regional subsurface geology essential for sediment exploration to support Louisiana’s marsh and barrier island restoration projects.


2010 ◽  
Vol 30 (4) ◽  
pp. 453-459
Author(s):  
Liang CHEN ◽  
Xiu-Feng ZHANG ◽  
Zheng-Wen LIU

Author(s):  
Cristián Raziel Delgado-González ◽  
Alfredo Madariaga-Navarrete ◽  
José Miguel Fernández-Cortés ◽  
Margarita Islas-Pelcastre ◽  
Goldie Oza ◽  
...  

Potable and good-quality drinking water availability is a serious global concern, since several pollution sources significantly contribute to low water quality. Amongst these pollution sources, several are releasing an array of hazardous agents into various environmental and water matrices. Unfortunately, there are not very many ecologically friendly systems available to treat the contaminated environment exclusively. Consequently, heavy metal water contamination leads to many diseases in humans, such as cardiopulmonary diseases and cytotoxicity, among others. To solve this problem, there are a plethora of emerging technologies that play an important role in defining treatment strategies. Phytoremediation, the usage of plants to remove contaminants, is a technology that has been widely used to remediate pollution in soils, with particular reference to toxic elements. Thus, hydroponic systems coupled with bioremediation for the removal of water contaminants have shown great relevance. In this review, we addressed several studies that support the development of phytoremediation systems in water. We cover the importance of applied science and environmental engineering to generate sustainable strategies to improve water quality. In this context, the phytoremediation capabilities of different plant species and possible obstacles that phytoremediation systems may encounter are discussed with suitable examples by comparing different mechanistic processes. According to the presented data, there are a wide range of plant species with water phytoremediation potential that need to be studied from a multidisciplinary perspective to make water phytoremediation a viable method.


Sign in / Sign up

Export Citation Format

Share Document