Image matching applied to autonomous navigation of unmanned aerial vehicles

Author(s):  
C.A.O. Silva ◽  
G.A.M. Goltz ◽  
E.H. Shiguemori ◽  
C.L. De Castro ◽  
H.F. De C. Velho ◽  
...  
Author(s):  
A.P. De Braga ◽  
H.F. De C. Velho ◽  
C.A.O. Silva ◽  
C.L. De Castro ◽  
E.H. Shiguemori ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1047 ◽  
Author(s):  
Jianfei Chen ◽  
Zhaohua Dai ◽  
ZhiQiang Chen

The advent of autonomous navigation, positioning, and general robotics technologies has enabled the improvement of small to miniature-sized unmanned aerial vehicles (UAVs, or ‘drones’) and their wide uses in engineering practice. Recent research endeavors further envision a systematic integration of aerial drones and traditional contact-based or ground-based sensors, leading to an aerial–ground wireless sensor network (AG-WSN), in which the UAV serves as both a gateway besides and a remote sensing platform. This paper serves two goals. First, we will review the recent development in architecture, design, and algorithms related to UAVs as a gateway and particularly illustrate its nature in realizing an opportunistic sensing network. Second, recognizing the opportunistic sensing need, we further aim to focus on achieving energy efficiency through developing an active radio frequency (RF)-based wake-up mechanism for aerial–ground data transmission. To prove the effectiveness of energy efficiency, several sensor wake-up solutions are physically implemented and evaluated. The results show that the RF-based wake-up mechanism can potentially save more than 98.4% of the energy that the traditional duty-cycle method would otherwise consume, and 96.8% if an infrared-receiver method is used.


Author(s):  
Dongjin Lee ◽  
Youngjoo Kim ◽  
Hyochoong Bang

A vision-aided terrain referenced navigation (VATRN) approach is addressed for autonomous navigation of unmanned aerial vehicles (UAVs) under GPS-denied conditions. A typical terrain referenced navigation (TRN) algorithm blends inertial navigation data with measured terrain information to estimate vehicle’s position. In this paper, a low-cost inertial navigation system (INS) for UAVs is supplemented with a monocular vision-aided navigation system and terrain height measurements. A point mass filter based on Bayesian estimation is employed as a TRN algorithm. Homograpies are established to estimate the vehicle’s relative translational motion using ground features with simple assumptions. And the error analysis in homography estimation is explored to estimate the error covariance matrix associated with the visual odometry data. The estimated error covariance is delivered to the TRN algorithm for robust estimation. Furthermore, multiple ground features tracked by image observations are utilized as multiple height measurements to improve the performance of the VATRN algorithm.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 74 ◽  
Author(s):  
Nex

Unmanned aerial vehicle in geomatics (UAV-g) is a well-established scientific event dedicated to UAVs in geomatics and remote sensing. In the different editions of the journal, new scientific challenges have increased their synergy with adjacent domains, such as robotics and computer vision, thereby increasing the impact of this conference. The 2019 edition has been hosted by the University of Twente (The Netherlands) and has attracted about 300 participants for the full three-day program. Researchers from 36 different countries (from all continents) have presented 89 accepted papers in 17 oral and 2 poster sessions. The presented papers covered multi-disciplinary topics, such as photogrammetry, natural resources monitoring, autonomous navigation, and deep learning. All these contributions have in common the use of UAV platforms for the innovative acquisition and processing of the acquired data and information extracted from the surrounding environment.


2009 ◽  
Vol 6 (3) ◽  
pp. 270-279 ◽  
Author(s):  
Xiao-lei Yu ◽  
Yong-rong Sun ◽  
Jian-ye Liu ◽  
Bing-wen Chen

Sign in / Sign up

Export Citation Format

Share Document