Residual stress, fatigue and electrical conductivity analysis after shot peening of aluminium alloy AlZn5.5MgCu

Author(s):  
Sebastjan Žagar ◽  
Janez Grum
2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


2021 ◽  
Vol 161 ◽  
pp. 107467
Author(s):  
Jiyin Zhang ◽  
Changfeng Yao ◽  
Liang Tan ◽  
Minchao Cui ◽  
Zhiqiang Lin ◽  
...  

2011 ◽  
Vol 462-463 ◽  
pp. 1355-1360
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

It is important to account for residual stress relaxation phenomenon in the design of the component. Specimens of 2024-T351 aluminium alloy were used in this study. The specimens were shot peened under three different shot peening intensities. Cyclic tests for two load magnitudes were performed for 1, 2, 10, 1000 and 10000 cycles. Residual stresses, microhardness and the cold work percentage were measured at initial state and after each loading cycle for the three shot peening intensities and for the two loads. The study revealed that most of the drop in the residual stress, microhardness and cold work happened in the first cycle are dependent on the applied load.


2004 ◽  
Vol 843 ◽  
Author(s):  
Hideo Mano ◽  
Kondo Satoru ◽  
Akihito Matsumuro ◽  
Toru Imura

ABSTRACTThe shot peening process is known to produce a hard layer, known as the white layer” on the surface of coil springs. However, little is known about the fatigue properties of this white-layer.In this study, coil springs with a white-layer were manufactured. The surface of these springs was then examined using micro Vickers hardness, FE-SEM etc. to test fatigue strength of the springs.From the results obtained, a microstructure of the white-layer with grain size of 50–100 nm was observed, with a Vickers hardness rating of 8–10 GPa.Tow category springs were manufactured utilizing a double-peening process. These springs had the same residual stress destruction and surface roughness. Only one difference was observed: one spring had a nanocrystalline layer on the surface, while the other did not. The results of the fatigue test realized an increase in the fatigue life of the nanocrystalline surface layer by 9%.


2012 ◽  
Vol 463-464 ◽  
pp. 1363-1367
Author(s):  
M.L. Zhang ◽  
J.M. Wang ◽  
Y.F. Jiang ◽  
Q.L. Zhang ◽  
Q.L. Zhou

The solution treatment and solution and aging treatment (T6) were disposed on 7050 aluminium alloy, then local processed by laser shock processing (LSP) with high-rate neodymium glass laser. The microhardness and residual stress on the surface of 7050 aluminium alloy were tested, then how the microstructure influences the residual stress on the surface of 7050 aluminium alloy by laser shock processing was analysed. The results show that the microhardness and residual compressive stress on the surface of 7050 aluminium alloy treated by solution and aging treatment was higher, and decreased obviously treated by solution treatment; the microhardness and residual compressive stress on the surface of 7050 aluminium alloy increased obviously by solution treatment and solution and aging treatment after laser shock processing; treated by solution treatment and solution and aging treatment, the microhardness and residual compressive stress of the material with uniform original structure was higher than the material with nonuniform original structure.


Sign in / Sign up

Export Citation Format

Share Document