Study on eddy current loss characteristics of precision giant magnetostrictive actuator considering magnetic field distribution

2019 ◽  
Vol 15 (4) ◽  
pp. 343
Author(s):  
Guo Zhe Yang ◽  
Yu Zhang ◽  
Hui Fang Liu ◽  
Shuang Gao ◽  
Han Yu Wang
2021 ◽  
Vol 16 (5) ◽  
pp. 797-805
Author(s):  
Bao-Ming Gao ◽  
Zheng-Yu Li ◽  
Jin-Wen Gao ◽  
Hao Liang ◽  
Zhi Yan ◽  
...  

Under working conditions, the conductive rods in the GIS flow through the power frequency alternating current. Due to the coupling effect of the magnetic field and electric field between the metal aluminum shell and the conductive rod, induced eddy currents are generated in the metal shell of the GIS. The heat generated by the current heating effect of the GIS conductive rod and the eddy current loss of the metal casing will cause the temperature rise of GIS equipment. Due to the limited volume, the heat dissipation capacity of GIS is poor. Excessive temperature rise will accelerate the insulation aging of GIS equipment, and even damage its insulation, which will affect safe operation. In order to obtain the temperature change law of GIS, related influencing factors such as eddy current loss, skin effect, proximity effect, convective heat transfer of SF6 gas, and gravity of SF6 gas are comprehensively considered. The finite element analysis is used to research and discuss GIS magnetic field distribution, eddy current, temperature distribution and SF6 gas velocity. The initial value of the temperature of each part is set to 293.15 K (20 °C), and the temperature in the GIS is calculated to gradually decrease from the inside to the outside under the rated AC current of 3150 A. The temperature at the conductive rod position is the highest at 335.32 K, and the temperature at the housing position is the lowest at 294.65 K.


Actuators ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Guoping Liu ◽  
Zhongbo He ◽  
Guo Bai ◽  
Jiawei Zheng ◽  
Jingtao Zhou ◽  
...  

Giant magnetostrictive materials (GMMs) have broad application prospects in the field of servo valves, but the giant magnetostrictive actuator (GMA) has problems such as large loss and severe heat generation, which affect the output effect and accuracy. To solve these problems, this paper designs a stacked giant magnetostrictive actuator (SGMA) and analyzes the magnetic circuit and magnetic field distribution of the SGMA. Based on the magnetic field analysis and the Jiles–Atherton model, we analyze the SGMA magnetization model, simplify the traditional model, and give a solution for the simplified model using the Runge–Kutta method. We analyze the eddy current loss of the SGMA, and according to Bessel’s equation and the Kelvin function, we calculate the relationship among eddy current loss, GMM rod radius, and magnetic field frequency. By analyzing the inherent hysteresis of GMMs, a hysteresis loss model of the SGMA is established in this paper. We also calculate the coil impedance and obtain the coil loss model. Based on the loss model, the SGMA cooling system is designed. Based on the above analysis, we design a SGMA prototype, set-up the corresponding experimental platform, and conduct the necessary experiments. The experimental results show that the SGMA responds well to different signals, but as frequency increases, attenuation, deformation, and hysteresis become more pronounced, which verifies the amplitude and phase changes caused by various losses in the theoretical analysis. The experiment also observes the temperature rise of the oil-cooled SGMA at different frequencies, indicating that the cooling system can effectively control the temperature change of the SGMA, which validates the foregoing analysis.


2012 ◽  
Vol 468-471 ◽  
pp. 1086-1089 ◽  
Author(s):  
Yong Ming Xu ◽  
Chao Du ◽  
Da Wei Meng

The problem about the eddy current loss which is caused by leakage magnetic field in ultrahigh pressure large capacity power transformer is becoming more extrusive. It is very significant to research the power transformer leakage magnetic field and eddy current loss on the tank wall thoroughly and accurately. 3D finite element model of power transformer leakage magnetic field and eddy current loss is established in this paper, the eddy current loss on the tank wall is calculated and the distribution is analyzed. For the eddy current loss could be reduced by magnetic shielding, new calculation model are established respectively, then eddy current loss on tank wall could be got with shielding. The best size and location of the shielding could be analyzed after changing the height of the shielding, which provided the important evidence to reduce tank wall eddy current loss effectively. The calculating methods have been proved to be accuracy after experiment.


2017 ◽  
Vol 25 (9) ◽  
pp. 2347-2358 ◽  
Author(s):  
何忠波 HE Zhong-bo ◽  
荣 策 RONG Ce ◽  
李冬伟 LI Dong-wei ◽  
薛光明 XUE Guang-ming ◽  
郑佳伟 ZHENG Jia-wei

2017 ◽  
Vol 66 (2) ◽  
pp. 295-312 ◽  
Author(s):  
Hongbo Qiu ◽  
Wenfei Yu ◽  
Yonghui Li ◽  
Cunxiang Yang

AbstractAt present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM). A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM), the motor temperature distribution with different harmonics was obtained.


2010 ◽  
Vol 139-141 ◽  
pp. 801-804
Author(s):  
Xiao Yang Jiang ◽  
Quan Guo Lu ◽  
Ding Fang Chen ◽  
Meng Lun Tao ◽  
Min Zhou

. A direct aspect of influencing giant magnetostrictive actuator's output performance is the driving magnetic field characteristics. Therefore, research on the influencing factors on the axial magnetic field distribution characteristics of giant magnetostrictive actuator is of great significance in the design. This paper analyzes the importance of the axial magnetic field distribution characteristics, analyzes the driving magnetic field using finite element method based on a designed giant magnetostrictive actuator, studies the affections of coil height, coil shape , magnetic block material, shell material , skeleton material, bottom cover material and output shaft material on the axial magnetic field distribution characteristics and reaches some conclusions about the influencing factors on the axial magnetic field distribution characteristics of giant magnetostrictive actuator. According to this paper, it provides the guidance for the optimization design of the driving magnetic field of the giant magnetostrictive actuator.


Sign in / Sign up

Export Citation Format

Share Document