A rough set-based effective rule generation method for classification with an application in intrusion detection

2013 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Prasanta Gogoi ◽  
Dhruba K. Bhattacharyya ◽  
Jugal K. Kalita
2014 ◽  
Vol 1 (2) ◽  
pp. 62-74 ◽  
Author(s):  
Payel Roy ◽  
Srijan Goswami ◽  
Sayan Chakraborty ◽  
Ahmad Taher Azar ◽  
Nilanjan Dey

In the domain of image processing, image segmentation has become one of the key application that is involved in most of the image based operations. Image segmentation refers to the process of breaking or partitioning any image. Although, like several image processing operations, image segmentation also faces some problems and issues when segmenting process becomes much more complicated. Previously lot of work has proved that Rough-set theory can be a useful method to overcome such complications during image segmentation. The Rough-set theory helps in very fast convergence and in avoiding local minima problem, thereby enhancing the performance of the EM, better result can be achieved. During rough-set-theoretic rule generation, each band is individualized by using the fuzzy-correlation-based gray-level thresholding. Therefore, use of Rough-set in image segmentation can be very useful. In this paper, a summary of all previous Rough-set based image segmentation methods are described in detail and also categorized accordingly. Rough-set based image segmentation provides a stable and better framework for image segmentation.


Author(s):  
Neha Gupta ◽  
Ritu Prasad ◽  
Praneet Saurabh ◽  
Bhupendra Verma

Author(s):  
Tarum Bhaskar ◽  
Narasimha Kamath B.

Intrusion detection system (IDS) is now becoming an integral part of the network security infrastructure. Data mining tools are widely used for developing an IDS. However, this requires an ability to find the mapping from the input space to the output space with the help of available data. Rough sets and neural networks are the best known data mining tools to analyze data and help solve this problem. This chapter proposes a novel hybrid method to integrate rough set theory, genetic algorithm (GA), and artificial neural network. Our method consists of two stages: First, rough set theory is applied to find the reduced dataset. Second, the results are used as inputs for the neural network, where a GA-based learning approach is used to train the intrusion detection system. The method is characterized not only by using attribute reduction as a pre-processing technique of an artificial neural network but also by an improved learning algorithm. The effectiveness of the proposed method is demonstrated on the KDD cup data.


Author(s):  
Yasuo Kudo ◽  
Tetsuya Murai

This paper focuses on rough set theory which provides mathematical foundations of set-theoretical approximation for concepts, as well as reasoning about data. Also presented in this paper is the concept of relative reducts which is one of the most important notions for rule generation based on rough set theory. In this paper, from the viewpoint of approximation, the authors introduce an evaluation criterion for relative reducts using roughness of partitions that are constructed from relative reducts. The proposed criterion evaluates each relative reduct by the average of coverage of decision rules based on the relative reduct, which also corresponds to evaluate the roughness of partition constructed from the relative reduct,


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 11953-11958 ◽  
Author(s):  
Kuo-Ping Lin ◽  
Kuo-Chen Hung ◽  
Ching-Lin Lin

2013 ◽  
Vol 416-417 ◽  
pp. 1399-1403 ◽  
Author(s):  
Zhi Cai Shi ◽  
Yong Xiang Xia ◽  
Chao Gang Yu ◽  
Jin Zu Zhou

The discretization is one of the most important steps for the application of Rough set theory. In this paper, we analyzed the shortcomings of the current relative works. Then we proposed a novel discretization algorithm based on information loss and gave its mathematical description. This algorithm used information loss as the measure so as to reduce the loss of the information entropy during discretizating. The algorithm was applied to different samples with the same attributes from KDDcup99 and intrusion detection systems. The experimental results show that this algorithm is sensitive to the samples only for parts of all attributes. But it dose not compromise the effect of intrusion detection and it improves the response performance of intrusion detection remarkably.


2016 ◽  
Vol 66 (6) ◽  
pp. 612 ◽  
Author(s):  
M.R. Gauthama Raman ◽  
K. Kannan ◽  
S.K. Pal ◽  
V. S. Shankar Sriram

Immense growth in network-based services had resulted in the upsurge of internet users, security threats and cyber-attacks. Intrusion detection systems (IDSs) have become an essential component of any network architecture, in order to secure an IT infrastructure from the malicious activities of the intruders. An efficient IDS should be able to detect, identify and track the malicious attempts made by the intruders. With many IDSs available in the literature, the most common challenge due to voluminous network traffic patterns is the curse of dimensionality. This scenario emphasizes the importance of feature selection algorithm, which can identify the relevant features and ignore the rest without any information loss. In this paper, a novel rough set κ-Helly property technique (RSKHT) feature selection algorithm had been proposed to identify the key features for network IDSs. Experiments carried using benchmark KDD cup 1999 dataset were found to be promising, when compared with the existing feature selection algorithms with respect to reduct size, classifier’s performance and time complexity. RSKHT was found to be computationally attractive and flexible for massive datasets.


Sign in / Sign up

Export Citation Format

Share Document