Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring

2017 ◽  
Vol 23 (4) ◽  
pp. 258 ◽  
Author(s):  
Feihong Gu ◽  
Yajie Sun
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sai Ji ◽  
Yajie Sun ◽  
Jian Shen

In practical structural health monitoring (SHM) process based on wireless sensor network (WSN), data loss often occurs during the data transmission between sensor nodes and the base station, which will affect the structural data analysis and subsequent decision making. In this paper, a method of recovering lost data in WSN based on compressive sensing (CS) is proposed. Compared with the existing methods, it is a simple and stable data recovery method and can obtain lower recovery data error for one-dimensional SHM’s data loss. First, response signalxis measured onto the measurement data vectorythrough inner products with random vectors. Note thatyis the linear projection ofxandyis permitted to be lost in part during the transmission. Next, when the base station receives the incomplete data, the response signalxcan be reconstructed from the data vectoryusing the CS method. Finally, the test of active structural damage identification on LF-21M aviation antirust aluminum plate is proposed. The response signal gathered from the aluminum plate is used to verify the data recovery ability of the proposed method.


2013 ◽  
Vol 753-755 ◽  
pp. 2343-2346
Author(s):  
Ya Jie Sun ◽  
Yong Hong Zhang ◽  
Hui Qiang Tang ◽  
Cheng Shan Qian ◽  
Shen Fang Yuan

Phased array theroy can controll the Lamb wave beem steering in certain range by adding the time delay to the signals. Phased array theory is used to identify the damge in the structure. One dimensional PZT array is restricted in monitoring distance. Two parellel PZT sensors arrays are utilized to monitor the CFPR structure to extend the monitoring distance and to improve the precision of the damage locatilization. The experiment is done on the CFPR structure by using two parellel PZT arrays to detect the damage in the structure. The results of the experiment is shown on the mapped image. Gray-scale in the mapped image from dark to light corresponds to the signal amplitude from low to high. The highlight of the mapped image is the damage location in the structure. The monitoring results in the CFPR structure by two parellel PZT arrays is accurate and identical.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5070 ◽  
Author(s):  
Liu ◽  
Xu ◽  
Li ◽  
Wang ◽  
Zhang

Piezoelectric (PZT) ceramic elements are often subjected to complex loads during in- service lifetime in structural health monitoring (SHM) systems, and debonding of both excitation actuators and receiving sensors have a negative effect on the monitoring signals. A first systematic investigation of debonding behaviors by considering actuators and sensors simultaneously was performed in this paper. The debonding areas of actuators were set in different percentage range from 0% to 70%, and sensors in 0%, 20%, 40% and 60%. The signal-based monitoring method was used to extract the characteristic parameters of both the amplitudes and phases of received signals. Experimental results revealed that as the debonding areas of the actuators increase, the normalized amplitude appears a quick decrease before 35% debonding area of actuators and then a slow rise until 60% of debonding reached. This may be explained that the 35% debonding turning point correspond to the coincidence of the excitation frequencies of peripheral actuators with the inherent frequency of the central piezoelectric sensor, and the 60% be the result of the maximum ability of piezoelectric sensor. The degrees of debonding of actuators and sensors also have significant influence on the phase angle offset, with large debonding of actuators increases the phase offset sharply. The research work may provide useful information for practical monitoring of SHM systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yajie Sun ◽  
Feihong Gu ◽  
Sai Ji ◽  
Lihua Wang

In order to ensure the safety of composite components, structural health monitoring is needed to detect structural performance in real-time at the early stage of damage occurred. This is difficult to detect complex components with single sensor detection technology, so that ultrasonic phased array technology using multisensor detection will be selected. Ultrasonic phased array technology can scan the structure in all directions and angles without moving or less moving the probe and becomes the first choice of structural health monitoring. However, a large amount of data will be generated when using ultrasonic phased array with Nyquist sampling theorem for structural health monitoring and is difficult to storage, transmission, and processing. Besides, traditional Nyquist sampling cannot satisfy the sampling of large amounts of data without distortion, so a more efficient acquisition technique must be chosen. Compressive sensing theory can ensure that if the signal is sparse, it can be sampled in low sampling rate which is much less than two times of the sampling rate as defined by Nyquist sampling theorem for a large number of data and reconstructed in high probability. Then, the experiment result indicated that the orthogonal matching pursuit algorithm can reconstruct the signal completely and accurately.


Sign in / Sign up

Export Citation Format

Share Document