Energy analysis and management in flowshop into Industry 4.0 context

Author(s):  
Fábio Lima ◽  
Alexandre Augusto Massote ◽  
Rodrigo Luiz Antoniol
Keyword(s):  
Author(s):  
J. R. Fields

The energy analysis of electrons scattered by a specimen in a scanning transmission electron microscope can improve contrast as well as aid in chemical identification. In so far as energy analysis is useful, one would like to be able to design a spectrometer which is tailored to his particular needs. In our own case, we require a spectrometer which will accept a parallel incident beam and which will focus the electrons in both the median and perpendicular planes. In addition, since we intend to follow the spectrometer by a detector array rather than a single energy selecting slit, we need as great a dispersion as possible. Therefore, we would like to follow our spectrometer by a magnifying lens. Consequently, the line along which electrons of varying energy are dispersed must be normal to the direction of the central ray at the spectrometer exit.


Author(s):  
V. Serin ◽  
K. Hssein ◽  
G. Zanchi ◽  
J. Sévely

The present developments of electron energy analysis in the microscopes by E.E.L.S. allow an accurate recording of the spectra and of their different complex structures associated with the inner shell electron excitation by the incident electrons (1). Among these structures, the Extended Energy Loss Fine Structures (EXELFS) are of particular interest. They are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy. Due to the EELS characteristic, the Fourier analysis of EXELFS oscillations appears as a promising technique for the characterization of composite materials, the major constituents of which are low Z elements. Using EXELFS, we have developed a microstructural study of carbon fibers. This analysis concerns the carbon K edge, which appears in the spectra at 285 eV. The purpose of the paper is to compare the local short range order, determined by this way in the case of Courtauld HTS and P100 ex-polyacrylonitrile carbon fibers, which are high tensile strength (HTS) and high modulus (HM) fibers respectively.


2017 ◽  
Vol 47 (187) ◽  
pp. 213-228
Author(s):  
Gaus Jobst ◽  
Knop Christopher ◽  
Wandjo David

Through the ongoing debate different positions support the hypothesis that Industry 4.0 evokes decentralization in everyday works. In this article we argue that the technological premises of Industry 4.0 lead to the contrary: centralized planning ensuing from optimized adaptation to the imperatives of the market. We exemplify this pattern, that we named ‘determinated procedure’, through exemplary cases from different industrial branches. Furthermore, we argue that (indeed) existing decentral moments neither amount to structural decentralization nor to humanizing and empowering concessions to employees, but rather primarily serve to their integration into the enterprise and mobilization of their production intelligence.


2018 ◽  
Vol 9 (3) ◽  
pp. 1-19 ◽  
Author(s):  
Silva Leandro Monteiro ◽  
◽  
Viagi Arcione Ferreira ◽  
Giacaglia Giorgio Eugenio Oscare ◽  
◽  
...  
Keyword(s):  

Author(s):  
Weihai Sun ◽  
Lemei Han

Machine fault detection has great practical significance. Compared with the detection method that requires external sensors, the detection of machine fault by sound signal does not need to destroy its structure. The current popular audio-based fault detection often needs a lot of learning data and complex learning process, and needs the support of known fault database. The fault detection method based on audio proposed in this paper only needs to ensure that the machine works normally in the first second. Through the correlation coefficient calculation, energy analysis, EMD and other methods to carry out time-frequency analysis of the subsequent collected sound signals, we can detect whether the machine has fault.


2019 ◽  
Vol 12 (1) ◽  
pp. 77-87
Author(s):  
György Kovács ◽  
Rabab Benotsmane ◽  
László Dudás

Recent tendencies – such as the life-cycles of products are shorter while consumers require more complex and more unique final products – poses many challenges to the production. The industrial sector is going through a paradigm shift. The traditional centrally controlled production processes will be replaced by decentralized control, which is built on the self-regulating ability of intelligent machines, products and workpieces that communicate with each other continuously. This new paradigm known as Industry 4.0. This conception is the introduction of digital network-linked intelligent systems, in which machines and products will communicate to one another in order to establish smart factories in which self-regulating production will be established. In this article, at first the essence, main goals and basic elements of Industry 4.0 conception is described. After it the autonomous systems are introduced which are based on multi agent systems. These systems include the collaborating robots via artificial intelligence which is an essential element of Industry 4.0.


Sign in / Sign up

Export Citation Format

Share Document