scholarly journals Durability of High Performance Concrete (HPC) Subject to Fire Temperature Impact

2016 ◽  
Vol 62 (4) ◽  
pp. 73-94 ◽  
Author(s):  
W. Jackiewicz-Rek ◽  
T. Drzymała ◽  
A. Kuś ◽  
M. Tomaszewski

AbstractIn the recent years a tendency for design of increasingly slender structures with the use of high performance concrete has been observed. Moreover, the use of high performance concrete in tunnel structures, subject to high loads with possibility of extreme loads occurrence such as fire, has an increasing significance.Presented studies aimed at improving high performance concrete properties in high temperature conditions (close to fire conditions) by aeration process, and determining high temperature impact on the concretes features related to their durability.In this paper it has been proven that it is possible to obtain high performance concretes resistant to high temperatures, and additionally that modification of the concrete mix with aerating additive does not result in deterioration of concrete properties when subject to water impact in various form.

2015 ◽  
Vol 1100 ◽  
pp. 162-165
Author(s):  
Martin Sedlmajer ◽  
Jiri Zach ◽  
Jitka Peterková ◽  
Lenka Bodnárová

The paper addresses the methodology of temperature observation of cement composites, such as concrete. It is mainly the monitoring of the course of hydration temperature and the possibilities of its regulation. Subsequently, the observation of temperature within samples which are exposed to high temperatures. Attention is paid to a variety of temperatures of a concrete segment which is being acted upon by a high-temperature source, e.g. fire. Temperature distribution at a varied distance from the heat source is observed.


2012 ◽  
Vol 174-177 ◽  
pp. 1067-1071 ◽  
Author(s):  
Jon Bi ◽  
Binsar Hariandja ◽  
Iswandi Imran ◽  
Ivindra Pane

Keywords: High Performance Concrete, mix proportions, compressive strength , and durability Abstract. The use of concrete materials to date, remain a key ingredient in such construction work on the construction of building, bridges and infrastructure. One indicator is the increased production of readymix concrete which is nearly 16 billion tons in 2010. But the increased used of concrete, apparently bring the impact of environmental damage. This is due to the fact that production of raw materials contributes greatly to CO2 in the air. One effort to reduce such impact is to use of high performance concretes. Mix proportion of High Performance Concrete are strongly determined by the quality and availablity of local materials. The implications of research result from other countries can‘t be directly used. Therefore is need to the research on development of High Performance Concrete mix using locally available materials. In this research the mix proportions for f’c : 60 and 80 MPa are developed using local materials that are commonly used by readymix producers. The high Performance Concrete is developed based on compressive strength and durability. The result is expected to be applied to readymix industry particularly for construction use in Indonesia.


2016 ◽  
Vol 711 ◽  
pp. 157-162 ◽  
Author(s):  
David Citek ◽  
Milan Rydval ◽  
Stanislav Rehacek ◽  
Jiří Kolísko

The Ultra High Performance Concrete (UHPC) is a very promising material suitable for application in special structures. However, the knowledge of performance of this relatively new material is rather limited. The exceptional mechanical properties of UHPC allow for a modification of the design rules, which are applicable in ordinary or high strength concrete. This paper deals in more detail with impact of thermal stress on bond properties between prestressing strands and UHPC and an influence of high temperature to final material properties of different UHPC mixtures. Specimens in the first experimental part were subjected to the cycling freeze-thaw testing. The relationship between bond behavior of both type of material (UHPC and ordinary concrete) and effect of cycling freeze-thaw tests was investigated. The second part of experimental work was focused on mechanical properties of UHPC exposure to the high temperature (Tmax = 200°C to Tmax = 1000°C). Tested mechanical properties were compressive and flexural strengths, the fracture properties will be presented in the next paper. The obtained experimental data serve as a basis for further systematic experimental verification and more accurate information about the significantly higher material properties of UHP(FR)C and its behavior in extreme conditions.


2013 ◽  
Vol 368-370 ◽  
pp. 1052-1055
Author(s):  
Seung Jo Lee ◽  
Jung Min Park

The aim of the study is to improve the understanding of the influence of reinforcing fiber types on the mechanical properties of high performance concretes (HPC) subjected to high temperature. The mechanical properties measured include residual compressive strength, weight reduction ratio, outward appearance property, and failure mode. Nylon, polypropylene, and steel fiber were added to enhance mechanical property of the concretes. After exposure to high temperatures ranged from 100 to 800°C, mechanical properties of fiber-toughened HPC were investigated. For HPC, although residual compressive strength was decreased by exposure to high temperature over 500°C, weight reduction ratio was significantly higher than that before heating temperature.


2012 ◽  
Vol 204-208 ◽  
pp. 3691-3694
Author(s):  
Jie Zhao ◽  
Jian Jun Zheng ◽  
Gai Fei Peng

Under high temperature conditions, such as fire, high-performance concrete will undergo material degradation or even spalling. Spalling is the most detrimental to concrete structures. To prevent concrete from spalling, the mechanism should be understood. Since the build-up vapor pressure in concrete is supposed to play a dominant role in spalling, a vapor pressure prediction model is proposed in this paper to quantitatively analyze the vapor pressure, which can be used for the spalling mechanism study.


2012 ◽  
Vol 226-228 ◽  
pp. 1709-1713
Author(s):  
Lan Yan ◽  
Y.M. Xing ◽  
Ji Jun Li

This paper investigated the high temperature mechanical properties of the hybrid fiber reinforced high performance concrete (HFHPC) and normal concrete (NC) .After being subjected to different elevated heating temperatures, two kinds of concretes have been tested for the compressive strength, splitting tensile strength and flexural strength of test specimen at room temperature and 200 °C,400 °C,600 °C,800 °C.Microstructure changes of concrete were also observed by using Scanning Electron Microscopy (SEM) after high temperature. The results show that the hybrid fiber can significantly increase mechanical properties of the concrete at room temperature and high temperature. SEM and XRD analysis shows that there is a permeable diffusion layer in the steel fiber surface because of solid state reaction in the Interfacial Transition Zone of steel fiber and concrete. This permeable diffusion layer is white, bright, serrated and mainly consist of FeSi2 and the complex hydrated calcium silicate. The compounds of this layer change the Interfacial Transition Zone structure, enhance bonding capacity of the steel fiber and matrix, and increase the high temperature mechanical properties of concrete.


Sign in / Sign up

Export Citation Format

Share Document