Residual compressive strength and microstructure of high performance concrete after exposure to high temperature

2000 ◽  
Vol 33 (5) ◽  
pp. 294-298 ◽  
Author(s):  
X. Luo ◽  
W. Sun ◽  
Y. N. Chan
2013 ◽  
Vol 368-370 ◽  
pp. 1052-1055
Author(s):  
Seung Jo Lee ◽  
Jung Min Park

The aim of the study is to improve the understanding of the influence of reinforcing fiber types on the mechanical properties of high performance concretes (HPC) subjected to high temperature. The mechanical properties measured include residual compressive strength, weight reduction ratio, outward appearance property, and failure mode. Nylon, polypropylene, and steel fiber were added to enhance mechanical property of the concretes. After exposure to high temperatures ranged from 100 to 800°C, mechanical properties of fiber-toughened HPC were investigated. For HPC, although residual compressive strength was decreased by exposure to high temperature over 500°C, weight reduction ratio was significantly higher than that before heating temperature.


2021 ◽  
pp. 224-231
Author(s):  
Huijie Shang, Qianqian Peng

In this paper, the effects of fiber on the residual strength and high temperature burst performance of ultra-high performance concrete are studied. This paper analyzes the performance change law of concrete after high temperature from three aspects: mass loss, ultrasonic wave velocity and compressive strength. The results show that with the increase of heating temperature, the mass loss increases and the ultrasonic wave velocity decreases. The compressive strength of concrete increases gradually before 300 ℃ and decreases gradually after 400 ℃. Mixing PVA fiber and steel fiber can not only improve the burst resistance of ultra-high performance concrete at high temperature, but also have high residual strength. This paper discusses the high temperature burst mechanism of ultra-high performance concrete, which is caused by the change of steam pressure and microstructure.


2014 ◽  
Vol 912-914 ◽  
pp. 227-230 ◽  
Author(s):  
Seung Jo Lee

The purpose of this study is to have a better understanding of the mechanical characteristics of high performance concrete which is produced by mixing reinforcing fiber controlled by high temperatures with fly ash. After heating up the concrete, its appearance, demolition mode, residual compressive strength, weight reduction ratio and other mechanical characteristics were measured. To improve the mechanical characteristics of concrete, it was mixed with nylon, polypropylene, steel fiber and fly ash. The specimen was exposed to 100 ~ 800°C and its crack control, spalling prevention and other mechanical characteristics were reviewed. When the high performance concrete was exposed to 600°C or higher, its residual compressive strength dropped but its weight reduction ratio was significantly higher than it was heated before.


2011 ◽  
Vol 250-253 ◽  
pp. 686-689 ◽  
Author(s):  
Shu Hua Liu ◽  
Zhi Yang Gao ◽  
Mei Juan Rao

A new kind of ultra high performance concrete containing limestone powder was studied in this paper. The results show that the compressive strength of the ultra high performance concrete containing limestone powder is higher than 120MPa; the hydration activity and the accelerating effect of limestone powder are obvious under the condition of high temperature. The limestone powder hydrated and formed calcium monocaboaluminate hydrates. The cost would be reduced when adding certain amount of limestone powder when confect ultra high performance concrete. It is economical and feasible.


Sign in / Sign up

Export Citation Format

Share Document