scholarly journals On the real differential of a slice regular function

2018 ◽  
Vol 18 (1) ◽  
pp. 5-26 ◽  
Author(s):  
Amedeo Altavilla

AbstractIn this paper we show that the real differential of any injective slice regular function is everywhere invertible. The result is a generalization of a theorem proved by G. Gentili, S. Salamon and C. Stoppato and it is obtained thanks, in particular, to some new information regarding the first coefficients of a certain polynomial expansion for slice regular functions (calledspherical expansion), and to a new general result which says that the slice derivative of any injective slice regular function is different from zero. A useful tool proven in this paper is a new formula that relates slice and spherical derivatives of a slice regular function. Given a slice regular function, part of its singular set is described as the union of surfaces on which it results to be constant.

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Amedeo Altavilla

AbstractGiven a quaternionic slice regular function f, we give a direct and effective way to compute the coefficients of its spherical expansion at any point. Such coefficients are obtained in terms of spherical and slice derivatives of the function itself. Afterwards, we compare the coefficients of f with those of its slice derivative $$\partial _{c}f$$ ∂ c f obtaining a countable family of differential equations satisfied by any slice regular function. The results are proved in all details and are accompanied to several examples. For some of the results, we also give alternative proofs.


2018 ◽  
Vol 62 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Anna Gori ◽  
Fabio Vlacci

AbstractA new criterion for local invertibility of slice regular quaternionic functions is obtained. This paper is motivated by the need to find a geometrical interpretation for analytic conditions on the real Jacobian associated with a slice regular function f. The criterion involves spherical and Cullen derivatives of f and gives rise to several geometric implications, including an application to related conformality properties.


2017 ◽  
Vol 28 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Cinzia Bisi ◽  
Caterina Stoppato

During the development of the theory of slice regular functions over the real algebra of quaternions [Formula: see text] in the last decade, some natural questions arose about slice regular functions on the open unit ball [Formula: see text] in [Formula: see text]. This work establishes several new results in this context. Along with some useful estimates for slice regular self-maps of [Formula: see text] fixing the origin, it establishes two variants of the quaternionic Schwarz–Pick lemma, specialized to maps [Formula: see text] that are not injective. These results allow a full generalization to quaternions of two theorems proven by Landau for holomorphic self-maps [Formula: see text] of the complex unit disk with [Formula: see text]. Landau had computed, in terms of [Formula: see text], a radius [Formula: see text] such that [Formula: see text] is injective at least in the disk [Formula: see text] and such that the inclusion [Formula: see text] holds. The analogous result proven here for slice regular functions [Formula: see text] allows a new approach to the study of Bloch–Landau-type properties of slice regular functions [Formula: see text].


2021 ◽  
Vol 31 (5) ◽  
Author(s):  
Xinyuan Dou ◽  
Ming Jin ◽  
Guangbin Ren ◽  
Irene Sabadini

AbstractIn this paper we summarize some known facts on slice topology in the quaternionic case, and we deepen some of them by proving new results and discussing some examples. We then show, following Dou et al. (A representation formula for slice regular functions over slice-cones in several variables, arXiv:2011.13770, 2020), how this setting allows us to generalize slice analysis to the general case of functions with values in a real left alternative algebra, which includes the case of slice monogenic functions with values in Clifford algebra. Moreover, we further extend slice analysis, in one and several variables, to functions with values in a Euclidean space of even dimension. In this framework, we study the domains of slice regularity, we prove some extension properties and the validity of a Taylor expansion for a slice regular function.


Author(s):  
Cinzia Bisi ◽  
Jörg Winkelmann

Abstract In this article, we investigate harmonicity, Laplacians, mean value theorems, and related topics in the context of quaternionic analysis. We observe that a Mean Value Formula for slice regular functions holds true and it is a consequence of the well-known Representation Formula for slice regular functions over $${\mathbb {H}}$$ H . Motivated by this observation, we have constructed three order-two differential operators in the kernel of which slice regular functions are, answering positively to the question: is a slice regular function over $${\mathbb {H}}$$ H (analogous to an holomorphic function over $${\mathbb {C}}$$ C ) ”harmonic” in some sense, i.e., is it in the kernel of some order-two differential operator over $${\mathbb {H}}$$ H ? Finally, some applications are deduced such as a Poisson Formula for slice regular functions over $${\mathbb {H}}$$ H and a Jensen’s Formula for semi-regular ones.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Filomat ◽  
2015 ◽  
Vol 29 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Emin Özcağ ◽  
İnci Egeb

The incomplete gamma type function ?*(?, x_) is defined as locally summable function on the real line for ?>0 by ?*(?,x_) = {?x0 |u|?-1 e-u du, x?0; 0, x > 0 = ?-x_0 |u|?-1 e-u du the integral divergining ? ? 0 and by using the recurrence relation ?*(? + 1,x_) = -??*(?,x_) - x?_ e-x the definition of ?*(?, x_) can be extended to the negative non-integer values of ?. Recently the authors [8] defined ?*(-m, x_) for m = 0, 1, 2,... . In this paper we define the derivatives of the incomplete gamma type function ?*(?, x_) as a distribution for all ? < 0.


2015 ◽  
Vol 15 (4) ◽  
Author(s):  
Fabrizio Colombo ◽  
J. Oscar González-Cervantes ◽  
Irene Sabadini

AbstractWe continue the study of Bergman theory for the class of slice regular functions. In the slice regular setting there are two possibilities to introduce the Bergman spaces, that are called of the first and of the second kind. In this paperwe mainly consider the Bergman theory of the second kind, by providing an explicit description of the Bergman kernel in the case of the unit ball and of the half space. In the case of the unit ball, we study the Bergman-Sce transform. We also show that the two Bergman theories can be compared only if suitableweights are taken into account. Finally,we use the Schwarz reflection principle to relate the Bergman kernel with its values on a complex half plane.


Sign in / Sign up

Export Citation Format

Share Document