scholarly journals Spectral and integral methods of determining parameters in selected electric arc models with a forced sinusoid current circuit

2016 ◽  
Vol 65 (1) ◽  
pp. 87-103 ◽  
Author(s):  
Antoni Sawicki ◽  
Maciej Haltof

Abstract The paper discusses problems arising in attempts to accurately represent dynamic processes of an electric arc by means of simple mathematical models. It describes the properties of the universal Pentegov model, employing any shape of static voltagecurrent characteristics of an arc. Next, it presents spectral and integral measuring methods for determining arc parameters in the Mayr, Cassie and Pentegov models of the electric arc with a forced sinusoid current circuit, with the raising static characteristics of hyperbolic-flat and hyperbolic-linear shape. The influence is discussed of the random power supply disturbances on errors of determining the mathematical model parameters.

2020 ◽  
Vol 209 ◽  
pp. 03002
Author(s):  
Vitalii Alekseiuk

The problems of state estimation of thermal power system operation and identification of mathematical model parameters have not been acceptably solved due to the complexity of studied objects and their mathematical models, and the lack of effective methods, algorithms and computer programs to solve the required mathematical problems. The results of solving the indicated problems are of importance as such, and play a great part in the qualitative solution to the problems of thermal power equipment control, e.g., the problems of optimal load dispatch among thermal power plant units and optimal control of thermal power equipment operation conditions. The paper describes an effective three-stage technique of mathematical model identification of complex thermal power equipment. The technique allows us to more effectively detect gross errors in measurements of control parameters used for identification of the mathematical model of the studied equipment, to evaluate correctness and rectify errors in the mathematical model construction, and to improve identification accuracy. The article presents a new formulation of the optimization problem for more efficient identification of mathematical models of heat power equipment. An effective three-stage technique of mathematical model identification of complex thermal power equipment was tested on a detailed mathematical model of the present-day 225 MW generating unit that was constructed by the author. The paper presents results of solving the identification problem of mathematical model parameters of a generating unit.


2019 ◽  
Vol 276 ◽  
pp. 06022 ◽  
Author(s):  
Vladimir Velichkin ◽  
Vladimir Zavyalov

The article presents the results of the analysis of the characteristics of heat exchangers methods for determining their mathematical models. The necessity of the availability of the mathematical model during the synthesis of automatic control systems with desired properties. The method of identification of the thermal control object by the testing control action is proposed. Since technological control objects always be an energy of interaction the energy efficiency criterion applied for automatic formation of the control action. Also the analytical self-adjusting system with a reference model in the form of an integrating link was applied. From the analytical researches it follows that the movement of the system along the optimal trajectory occurs at a constant speed and does not depend on the properties of the control object, and the optimal control depends on the properties of the control object, time, and technological requirements. It is shown that mathematical models of heat exchangers of the first and second orders are determined quite simply. The accuracy of the mathematical model parameters is limited only by the accuracy of the experimental data. The quality of control systems with desired properties, synthesized by experimental, and accurate models are virtually indistinguishable.


Author(s):  
V. S. Malyar ◽  
A. V. Malyar

. Methods and mathematical models for studying the modes and characteristics of the three-phase squirrel-cage induction motor with the power supplied to the stator winding from the current source have been developed. The specific features of the algorithms for calculating transients, steady-state modes and static characteristics are discussed. The results of the calculation of the processes and characteristics of induction motors with the power supply from the current source and the voltage source are compared. Steady-state and dynamic modes cannot be studied with a sufficient adequacy based on the known equivalent circuits; this requires using dynamic parameters, which are the elements of the Jacobi matrix of the system of equations of the electromechanical equilibrium. In the mathematical model, the state equations of the stator and rotor circuits are written in the fixed two-phase coordinate system. The transients are described by the system of differential equations of electrical equilibrium of the transformed circuits of the motor and the equation of the rotor motion and the steady-state modes by the system of algebraic equation. The developed algorithms are based on the mathematical model of the motor in which the magnetic path saturation and skin effect in the squirrel-cage bars are taken into consideration. The magnetic path saturation is accounted for by using the real characteristics of magnetizing by the main magnetic flux and leakage fluxes of the stator and rotor windings. Based on them, the differential inductances are calculated, which are the elements of the Jacobi matrix of the system of equations describing the dynamic modes and static characteristic. In order to take into account the skin effect in the squirrel-cage rotor, each bar along with the squirrel-cage rings is divided height-wise into several elements. As a result, the mathematical model considers the equivalent circuits of the rotor with different parameters which are connected by mutual inductance. The non-linear system of algebraic equations of electrical equilibrium describing the steady-state modes is solved by the parameter continuation method. To calculate the static characteristics, the differential method combined with the Newton’s Iterative refinement is used.


Author(s):  
Vladimir Grinkevich ◽  

The evaluation of the mathematical model parameters of a non-linear object with a transport delay is considered in this paper. A temperature controlled stage based on a Peltier element is an identification object in the paper. Several input signal implementations are applied to the input of the identification object. The least squares method is applied for the calculation of the non-linear differential equitation parameters which describe the identification object. The least squares method is used due to its simplicity and the possibility of identification non-linear objects. The parameters values obtained in the process of identification are provided. The plots of temperature changes in the temperature control system with a controller designed based on the mathematical model of the control object obtained as a result of identification are shown. It is found that the mathematical model obtained in the process of identification may be applied to design controllers for non-linear systems, in particular for a temperature stage based on a Peltier element, and for self-tuning controllers. However, the least square method proposed in the paper cannot estimate the transport delay time. Therefore it is required to evaluate the time delay by temperature transient processes. Dynamic object identification is applied when it is required to obtain a mathematical model structure and evaluate the parameters by an input and output control object signal. Also, identification is applied for auto tuning of controllers. A mathematical model of a control object is required to design the controller which is used to provide the required accuracy and stability of control systems. Peltier elements are applied to design low-power and small- size temperature stage . Hot benches based on a Peltier element can provide the desired temperature above and below ambient temperature.


2020 ◽  
pp. 442-451
Author(s):  
А.V. Batig ◽  
A. Ya. Kuzyshyn

One of the most important problems that pose a serious threat to the functioning of railways is the problem of freight cars derailment. However, according to statistics, the number of cases of the derailments of freight cars in trains annually grows. Тo prevent such cases, the necessary preventive measures are developed, and to study the causes of their occurrence, a significant number of mathematical models, programs and software systems created by leading domestic and foreign scientists. Studies of such mathematical models by the authors of this work have led to the conclusion that they are not sufficiently detailed to the extent that it is necessary for analyze the reasons of its derailment. At the same time, an analysis of the causes of the rolling stock derailments on the railways of Ukraine over the past five years showed that in about 20 % of cases they are obvious, and in 7 % of cases they are not obvious and implicitly expressed. The study of such cases of rolling stock derailment during an official investigation by the railway and during forensic railway transport expertises requires the use of an improved mathematical model of a freight car, which would allow a quantitative assessment of the impact of its parameters and rail track on the conditions of railway accidents. Therefore, taking into account the main reasons that caused the occurrence of such railroad accidents over the last five years on the railways of Ukraine, the article selected the main directions for improving the mathematical model of a freight car, allowing to cover all the many factors (explicit and hidden) and identify the most significant ones regarding the circumstances of the derailment rolling stock off the track, established on the basis of a computer experiment. It is proposed in the mathematical model of a freight car to take into account the guiding force, the value of which is one of the main indicators of the stability of the rolling stock. The authors of the article noted that not taking into account the influence of the guiding forces on the dynamics of the freight car can lead to an erroneous determination of the reasons for the rolling stock derailment or even to the impossibility of establishing them.


India is a worldwide agriculture business powerhouse. Future of agriculture-based products depends on the crop production. A mathematical model might be characterized as a lot of equations that speak to the conduct of a framework. By using mathematical model in agriculture field, we can predict the production of crop in particular area. There are various factors affecting crops such as Rainfall, GHG Emissions, Temperature, Urbanization, climate, humidity etc. A mathematical model is a simplified representation of a real-world system. It forms the system using mathematical principles in the form of a condition or a set of conditions. Suppose we need to increase the crop production, at that time the mathematical model plays a major role and our work can be easier, more significant by using the mathematical model. Through the mathematical model we predict the crop production in upcoming years. .AI, ML, IOT play a major role to predict the future of agriculture, but without mathematical models it is not possible to predict crop production accurately. To solve the real-world agriculture problem, mathematical models play a major role for accurate results. Correlation Analysis, Multiple Regression analysis and fuzzy logic simulation standards have been utilized for building a grain production benefit depending model from crop production. Prediction of crop is beneficiary to the farmer to analyze the crop management. By using the present agriculture data set which is available on the government website, we can build a mathematical model.


1971 ◽  
Vol 69 (3) ◽  
pp. 423-433 ◽  
Author(s):  
B. J. Hammond ◽  
D. A. J. Tyrrell

SUMMARYRecords of seven common-cold outbreaks on the island of Tristan da Cunha are compared with the corresponding time courses given by the mathematical model of Kermack & McKendrick (1927) and with an alternative model that directly involves a constant average duration of individual infection. Using computer simulation techniques the latter model is shown to be preferred and is then closely matched to the field data to obtain values for the model parameters. Consideration is then given to the intensity of epidemics predicted by the model and to the distribution of the actual epidemics relative to the theoretical epidemic threshold.


Author(s):  
Alla A. Mussina

The article defines the basic concepts of filtration theory and provides an overview of the existing mathematical models of inhomogeneous liquids in porous media. The paper considers the Stefan problem. The number of scientific papers devoted to the study of porous structures has recently increased. This is primarily due to the fact that the prob-lems of oil and uranium production have been identified, and the solution of environmental problems is overdue. Therefore, a new device is needed to develop models of liquid filtration. With the advent and development of computer technology, it has become easier to solve problems that require numerical methods for their solution. Understanding the movement of fluids and the mechanism of dissolution of rocks under the action of acids in heterogeneous porous media is of great importance for the extraction and production of oil and the effective management of these processes. The article examines the mathematical model of the theory of isothermal filtration. Possible variants of the solva-bility of the model are shown. The research scheme consists of the output of a mathematical model, the formulation of the problem, one variant of the solution of the problem, the algorithm of the numerical method of solving the problem.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document