scholarly journals Diagnosis Of The Impact Of The Gabčíkovo Water Project On Soil Water Regime In The Surroundings

2014 ◽  
Vol 17 (2) ◽  
pp. 48-51
Author(s):  
Miroslava JARABICOVÁ ◽  
Mária PÁSZTOROVÁ ◽  
Justína VITKOVÁ ◽  
Peter MINARIČ

Abstract Rye Island is a unique natural formation, which lies between the main flow of the Danube River and the Little Danube River and is the largest river island in Europe. It is located in the southwest of Slovakia and with its mild to slightly warm climate is one of the most fertile agricultural areas in Slovakia. The whole Rye Island is also our greatest reservoir of quality waters used for drinking purposes, where groundwaters of Rye Island are permanently supplied with water from the Danube River. It means that as water levels in the Danube River were unstable before the construction of the Gabčíkovo Water Project, also the groundwater level faced large fluctuations. Changes occurred after putting the Gabčíkovo Water Project into service, with a decrease in groundwater levels. Thereby, the conditions for agriculture have improved and drying of surrounding protected floodplain forests has stopped. Through the present contribution we decided to analyse the impact of Gabčíkovo on soil water regime in the area of Rye Island, and evaluate the course of groundwater level, precipitation and soil water storage over time. For the representative area we chose a forest ecosystem of Král’ovská Lúka and evaluated the period 1999 to 2009.

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S139-S146 ◽  
Author(s):  
J. Šútor ◽  
M. Gomboš ◽  
M. Kutílek ◽  
M. Krejča

During the vegetation season, the water storage in the soil aeration zone is influenced by meteorological phenomena and by the vegetated cover. If the groundwater table is in contact with the soil profile, its contribution to water storage must be considered. This impact can be either monitored directly or the mathematical model of the soil moisture regime can be used to simulate it. We present the results of monitoring soil water content in the aeration zone of the East Slovakian Lowland. The main problem is the evaluation of the soil water storage in seasons and in years in the soil profile. Until now, classification systems of the soil water regime evaluation have been mainly based upon climatological factors and soil morphology where the classification has been realized on the basis of indirect indicators. Here, a new classification system based upon quantified data sets is introduced and applied for the measured data. The system considers the degree of accessibility of soil water to plants, including the excess of soil water related to the duration for those characteristic periods. The time span is hierarchically arranged to differentiate between the dominant water storage periods and short-term fluctuations. The lowest taxonomic units characterize the vertical fluxes over time periods. The system allows the comparison of soil water regime taxons over several years and under different types of vegetative cover, or due to various types of land use. We monitored soil water content on two localities, one with a deep ground water level, one with a shallow ground water level. The profile with a shallow ground water level keeps a more uniform taxons and subtaxons of soil water regime due to the crop variation than the profile with a deep ground water level.


2011 ◽  
Vol 8 (6) ◽  
pp. 9797-9841 ◽  
Author(s):  
S. S. W. Mavimbela ◽  
L. D. van Rensburg

Abstract. The soil water release (SWC) and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction (h) and unsaturated hydraulic conductivity (K-coefficient) as a function of soil water content, SWC (θ), were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM) was appropriate for this work. Independently, the saturated hydraulic conductivity (Ks) was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400–700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in Ks in conjunction with a steep K-coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

1986 ◽  
Vol 11 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Adrian C. Armstrong ◽  
Robert Arrowsmith

2019 ◽  
Vol 65 (3) ◽  
Author(s):  
Ivan SIMUNIC ◽  
Tanja LIKSO ◽  
Otilija MISECKAITE ◽  
Palma ORLOVIC-LEKO ◽  
Irena CIGLENECKI ◽  
...  

2009 ◽  
Vol 60 (8) ◽  
pp. 730 ◽  
Author(s):  
P. R. Ward ◽  
K. Whisson ◽  
S. F. Micin ◽  
D. Zeelenberg ◽  
S. P. Milroy

In Mediterranean-type climates, dryland soil water storage and evaporation during the hot and dry summer are poorly understood, particularly for sandy-textured soils. Continued evaporation during summer, and any effects of crop stubble management, could have a significant impact on annual components of the water balance and crop yield. In this research, the effect of wheat stubble management on summer evaporation and soil water storage was investigated for a sandy soil in south-western Australia, during the summers of 2005–06 and 2006–07. Treatments comprised: retained standing stubble; retained flattened stubble; removed stubble; and removed stubble followed by burying the crowns with topsoil from an adjacent area. Under ‘dry’ conditions, evaporation continued at ~0.2 mm/day. In contrast to previous results for finer textured soil types, stubble retention did not decrease the rate of evaporation, but marginally (10–30%) increased evaporation on 7 out of 14 days when measurements were taken. Significant differences due to stubble management were observed in two successive summers, but only for relatively dry soil conditions. There were no significant differences observed for several days after irrigation or rainfall. Under dry conditions in the absence of rainfall, total decrease in water storage during a 90-day summer period could be ~20 mm, but differences attributable to stubble management are likely to be a few mm.


Sign in / Sign up

Export Citation Format

Share Document