scholarly journals Joining Of Green Body And Dense Substrate For Indium Tin Oxide Under Uniaxial Pressure In An Open Condition

2015 ◽  
Vol 60 (2) ◽  
pp. 1209-1212
Author(s):  
G.-S. Moon ◽  
T.-J. Chung ◽  
S.-H. Yang ◽  
G.-S. Hong ◽  
K.-S. Oh

Abstract The green body and dense substrate of indium tin oxide was joined by uniaxially pressing at 0.3 MPa at 1300°C to test the restoring of the eroded part of transparent conducting oxide target. The green body was sintered to 98% of theoretical density under the suppression of shrinkage along the boundary below 5%. The boundary between two parts was free of pore but could be recognized from the difference in grain sizes. The joined part had the virtually same density with the substrate, but the grain size was less than one fifth compared with that of substrate.

2016 ◽  
Vol 27 (5) ◽  
pp. 4913-4922 ◽  
Author(s):  
M. Duta ◽  
M. Anastasescu ◽  
J. M. Calderon-Moreno ◽  
L. Predoana ◽  
S. Preda ◽  
...  

2016 ◽  
Vol 62 (11) ◽  
pp. 944-952 ◽  
Author(s):  
Lotfi Mhamdi ◽  
Nejib Mhamdi ◽  
Naceur Mhamdi ◽  
Philippe Lejeune ◽  
Nicole Jaffrezic ◽  
...  

This preliminary study focused on the effect of exposure to 0.5 T static magnetic fields on Escherichia coli adhesion and orientation. We investigated the difference in bacterial adhesion on the surface of glass and indium tin oxide-coated glass when exposed to a magnetic field either perpendicular or parallel to the adhesion surface (vectors of magnetic induction are perpendicular or parallel to the adhesion surface, respectively). Control cultures were simultaneously grown under identical conditions but without exposure to the magnetic field. We observed a decrease in cell adhesion after exposure to the magnetic field. Orientation of bacteria cells was affected after exposure to a parallel magnetic field. On the other hand, no effect on the orientation of bacteria cells was observed after exposure to a perpendicular magnetic field.


1983 ◽  
Author(s):  
S. S. Bawa ◽  
S. S. Sharma ◽  
S. A. Agnihotry ◽  
A. M. Biradar ◽  
Subhas Chandra

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1387
Author(s):  
Zhucheng Jiang ◽  
Ting Liu ◽  
Xiaoyu Zhai ◽  
Jiaxiang Liu

Indium tin oxide (ITO), an experimentally friendly transparent conducting oxide (TCO), has attracted great attention in the photoelectric field due to its intrinsically low resistivity and high transparency. In this work, the experimental conditions of preparing ITO nanoparticles using the microemulsion method were optimized by an orthogonal experiment. The optimal experimental conditions were obtained: mass ratio of the surfactant (AEO-3, MOA-5), a co-surfactant (n-propyl alcohol) of 5:3, molar ratio of indium and ammonia of 1:20, calcination temperature of 700 °C and calcination time of 4 h. Subsequently, the influence from process variables on the resistivity was researched systematically. The results demonstrated that the calcination temperature had a great effect on the resistivity; the resistivity reduced from 11.28 to 2.72 Ω·cm with the increase in the calcination temperature from 500 to 700 °C. Ultimately, ITO nanoparticles were prepared and systematically characterized under the optimal experimental conditions. The particles with a size of 60 nm were attributed to the cubic ITO crystal phase and showed low resistivity of 0.3675 Ω·cm. Significantly, ITO nanoparticles with low resistivity were obtained using the microemulsion method, which has potential application in the field of ITO nanoparticle preparation.


Sign in / Sign up

Export Citation Format

Share Document