scholarly journals MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation

2017 ◽  
Vol 52 (1) ◽  
pp. 1-8
Author(s):  
V.V. Pashkevich

Abstract The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.

2011 ◽  
Vol 46 (2) ◽  
pp. 63-73
Author(s):  
V. Pashkevich ◽  
G. Eroshkin

Construction of the New High-Precision Moon Rotation Series at a Long Time Intervals The main purposes of this research are the construction of the new high-precision Moon Rotation Series (MRS2011), dynamically adequate to the DE404/LE404 and the DE406/LE406 ephemeris, over long time intervals. The comparison of the new highprecision Moon Rotation solutions of MRS2011 with the solution of MRS2010 (Pashkevich and Eroshkin, 2010), which is dynamically adequate to the DE200/LE200 ephemeris over 418.9 year time interval, is performed. The dynamics of the rotational motion of the Moon is studied numerically by using Rodrigues-Hamilton parameters over 418.9, 2000 and 6000 years. The numerical solution of the Moon rotation is implemented with the quadruple precision of the calculations. The results of the numerical solution of the problem are compared with the composite semi-analytical theory of the Moon rotation (SMR) (Pashkevich and Eroshkin, 2010) with respect to the fixed ecliptic of epoch J2000. The initial conditions of the numerical integration are taken from SMR. The investigation of the discrepancies is carried out by the least squares and spectral analysis methods for the Newtonian case. All the secular, periodic and Poisson terms, representing the behavior of the residuals, are interpreted as corrections to SMR semi-analytical theory. As a result, the Moon Rotation Series (MRS2011) is constructed, which is dynamically adequate to the DE404/LE404 and the DE406/LE406 ephemeris over 418.9, 2000 and 6000 years. A numerical solution for the Moon rotation is obtained anew with the new initial conditions calculated by means of MRS2011. The discrepancies between the new numerical solution and the semi-analytical solution of MRS2011 do not surpass 20 mas over 418.9 year time interval, 64 mas over 2000 year time interval and 8 arc seconds over 6000 year time interval. Thus, the result of the comparison demonstrates a good consistency of MRS2011 series with the DE/LE ephemeris.


2018 ◽  
Vol 3 (2) ◽  
pp. 207-216 ◽  
Author(s):  
David Fisher ◽  
Lionel Sims

Claims first made over half a century ago that certain prehistoric monuments utilised high-precision alignments on the horizon risings and settings of the Sun and the Moon have recently resurfaced. While archaeoastronomy early on retreated from these claims, as a way to preserve the discipline in an academic boundary dispute, it did so without a rigorous examination of Thom’s concept of a “lunar standstill”. Gough’s uncritical resurrection of Thom’s usage of the term provides a long-overdue opportunity for the discipline to correct this slippage. Gough (2013), in keeping with Thom (1971), claims that certain standing stones and short stone rows point to distant horizon features which allow high-precision alignments on the risings and settings of the Sun and the Moon dating from about 1700 BC. To assist archaeoastronomy in breaking out of its interpretive rut and from “going round in circles” (Ruggles 2011), this paper evaluates the validity of this claim. Through computer modelling, the celestial mechanics of horizon alignments are here explored in their landscape context with a view to testing the very possibility of high-precision alignments to the lunar extremes. It is found that, due to the motion of the Moon on the horizon, only low-precision alignments are feasible, which would seem to indicate that the properties of lunar standstills could not have included high-precision markers for prehistoric megalith builders.


1975 ◽  
Vol 30 (5) ◽  
pp. 656-671
Author(s):  
W. Bauhoff

AbstractThe mass eigenvalue equation for mesons in nonlinear spinor theory is derived by functional methods. In second order it leads to a spinorial Bethe-Salpeter equation. This is solved by a variational method with high precision for arbitrary angular momentum. The results for scalar mesons show a shift of the first order results, obtained earlier. The agreement with experiment is improved thereby. An excited state corresponding to the η' is found. A calculation of a Regge trajectory is included,too.


1998 ◽  
Vol 11 (1) ◽  
pp. 583-583
Author(s):  
S. Röser ◽  
U. Bastian ◽  
K.S. de Boer ◽  
E. Høg ◽  
E. Schilbach ◽  
...  

DIVA (Double Interferometer for Visual Astrometry) is a Fizeau interferometer on a small satellite. It will perform astrometric and photometric observations of at least 4 million stars. A launch in 2002 and a minimum mission length of 24 months are aimed at. A detailed description of the experiment can be obtained from the DIVA homepage at http://www.aip.de:8080/᷉dso/diva. An overview is given by Röser et al., 1997. The limiting magnitude of DIVA is about V = 15 for spectral types earlier than M0, but drops to about V = 17.5 for stars later than M5. Table 1 gives a short overview on DIVA’s performance. DIVA will carry out a skysurvey complete to V = 12.5. For the first time this survey will comprise precise photometry in at least 8 bands in the wavelength range from 400 to 1000 nm. DIVA will improve parallaxes by a factor of 3 compared to Hipparcos; proper motions by at least a factor of 2 and, in combination with the Hipparcos observations, by a factor of 10 for Hipparcos stars. At least 30 times asmany stars as Hipparcos will be observed, and doing this DIVA will fill the gap in observations between Hipparcos and GAIA. DIVA’s combined astrometric and photometric measurements of high precision will have important impacts on astronomy and astrophysics in the next decade.


2010 ◽  
Vol 97-101 ◽  
pp. 64-68
Author(s):  
Jian Chen ◽  
Jin Wang ◽  
Guo Dong Lu ◽  
Zheng Qi Ling

High- precision and large scale are the developing trend for injection molding machine clamping system .This paper compared the characteristics of three-platen toggle and dual-platen hydraulic clamping system. The key impact factors that effecting plastic parts` precision from clamping system were discussed systematically first time. Based on these analyses, a new clamping system has been proposed and manufactured to improve the plastics parts` precision, including three new technologies: new type dual-platen structure, parallelism adaptive correction technology and numerical controlled hydraulic servo system technology. It has been applied in practical machine successfully, and experiment result proves that it is effective enough to satisfying the high-precision molding of large plastics parts.


2009 ◽  
Vol 5 (S261) ◽  
pp. 112-123 ◽  
Author(s):  
S. A. Klioner ◽  
E. Gerlach ◽  
M. H. Soffel

AbstractRelativistic modelling of rotational motion of extended bodies represents one of the most complicated problems of Applied Relativity. The relativistic reference systems of IAU (2000) give a suitable theoretical framework for such a modelling. Recent developments in the post-Newtonian theory of Earth rotation in the limit of rigidly rotating multipoles are reported below. All components of the theory are summarized and the results are demonstrated. The experience with the relativistic Earth rotation theory can be directly applied to model the rotational motion of other celestial bodies. The high-precision theories of rotation of the Moon, Mars and Mercury can be expected to be of interest in the near future.


2011 ◽  
Vol 255-260 ◽  
pp. 596-601 ◽  
Author(s):  
Ke Bin Jiang ◽  
Yong Ding ◽  
Ya Wen Liu ◽  
Feng Zheng

Some secondary effect introduced by corrugated configuration of corrugated web was studied and formulas were proposed. The deduction for these formulas was resolved into two steps. Step I: to solve the behavior of whole corrugated web by considering it as an orthotropic plate; Step II: to solve the secondary effect according to the shape parameters of corrugation based on the result of Step I. Subsequently, a numerical experiment was designed to validate the analytical work with the help of finite element package ANSYS taking material nonlinearity into consideration. The results obtained from numerical and analytical methods show good agreement. It indicates that the formulas proposed in this paper are convenient and efficient. This research deals with this secondary effect for the first time; more studies are needed for the effect on local buckling of corrugated webs.


Author(s):  
David Fisher

Today we learn at such a young age about the periodic properties of the elements and their atomic structure that it seems as if we grew up with the knowledge, and that everyone must always have known such basic, simple stuff. But till nearly the end of the nineteenth century no one even suspected that such things as the noble gases, with their filled electronic orbits, might exist. Helium was the first one we at Brookhaven looked for in our mass spectrometer, and the first one discovered. This was in 1868, but the discovery was ignored and the discoverer ridiculed. He didn’t care; he had other things on his mind. His name was Pierre Jules César Janssen, and he was a French astronomer who sailed to India that year in order to take advantage of a predicted solar eclipse. With the overwhelming brightness of the sun’s disk blocked by the moon, he hoped to observe the outer layers using the newly discovered technique of absorption spectroscopy. Nobody at the time understood why, but it had been observed that when a bright light shone through a gas, the chemical elements in the gas absorbed the light at specific wavelengths. The resulting dark lines in the emission spectrum of the light were like fingerprints, for it had been found in chemical laboratories that when an element was heated it emitted light at the same wavelengths it would absorb when light from an outside source was shined on it. So the way the technique worked, Janssen reasoned, was that he could measure the wavelengths of the solar absorbed lines and compare them with lines emitted in chemical laboratories where different elements were routinely studied, thus identifying the gases present in the sun. On August 18 of that year the moon moved properly into position, and Janssen’s spectroscope captured the dark absorption lines of the gases surrounding the sun. It was an exciting moment, as for the first time the old riddle could be answered: “Twinkle twinkle, little star, how I wonder what you are.” The answer now was clear: the sun, a typical star, was made overwhelmingly of hydrogen. But to Janssen’s surprise there was one additional and annoying line, with a wavelength of 587.49 nanometers.


Sign in / Sign up

Export Citation Format

Share Document