Viroids with Hammerhead Ribozymes: Some Unique Structural and Functional Aspects with Respect to Other Members of the Group

1999 ◽  
Vol 380 (7-8) ◽  
pp. 849-854 ◽  
Author(s):  
R. Flores ◽  
J.-A. Navarro ◽  
M. de la Peña ◽  
B. Navarro ◽  
S. Ambrós ◽  
...  

AbstractViroids, subviral pathogens of plants, are composed of a single-stranded circular RNA of 246–399 nucleotides. Within the 27 viroids sequenced, avocado sunblotch, peach latent mosaic and chrysanthemum chlorotic mottle viroids (ASBVd, PLMVd and CChMVd, respectively) can form hammerhead structures in both of their polarity strands. These ribozymes mediate self-cleavage of the oligomeric RNAs generated in the replication through a rolling circle mechanism, whose two other steps are catalyzed by an RNA polymerase and an RNA ligase. ASBVd, and presumably PLMVd and CChMVd, replicate and accumulate in the chloroplast, whereas typical viroids replicate and accumulate in the nucleus. PLMVd and CChMVd do not adopt a rod-like or quasi rod-like secondary structure as typical viroids do but have a highly branched conformation. A pathogenicity determinant has been mapped in a defined region of the CChMVd molecule.

Author(s):  
Francesco Di Serio ◽  
Robert A. Owens ◽  
Shi-Fang Li ◽  
Jaroslav Matoušek ◽  
Vicente Pallás ◽  
...  

Members of the family Pospiviroidae have single-stranded circular RNA genomes that adopt a rod-like or a quasi-rod-like conformation. These genomes contain a central conserved region that is involved in replication in the nucleus through an asymmetric RNA–RNA rolling-circle mechanism. Members of the family Pospiviroidae lack the hammerhead ribozymes that are typical of viroids classified in the family Avsunviroidae. The family Pospiviroidae includes the genera Apscaviroid, Cocadviroid, Coleviroid, Hostuviroid and Pospiviroid, with >25 species. This is a summary of the ICTV Report on the family Pospiviroidae, which is available at ictv.global/report/pospiviroidae.


2001 ◽  
Vol 75 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Fabien Côté ◽  
Dominique Lévesque ◽  
Jean-Pierre Perreault

ABSTRACT Peach latent mosaic viroid (PLMVd) is a circular RNA pathogen that replicates in a DNA-independent fashion via a rolling circle mechanism. PLMVd has been shown to self-ligate in vitro primarily via the formation of 2′,5′-phosphodiester bonds; however, in vivo the occurrence and necessity of this nonenzymatic mechanism are not evident. Here, we unequivocally report the presence of 2′,5′-phosphodiester bonds at the ligation site of circular PLMVd strands isolated from infected peach leaves. These bonds serve to close the linear conformers (i.e., intermediates), yielding circular ones. Furthermore, these bonds are shown to stabilize the replicational circular templates, resulting in a significant advantage in terms of viroid viability. Although the mechanism responsible for the formation of these 2′,5′-phosphodiester bonds remains to be elucidated, a hypothesis describing in vivo nonenzymatic self-ligation is proposed. Most significantly, our results clearly show that 2′,5′-phosphodiester bonds are still present in nature and that they are of biological importance.


2004 ◽  
Vol 51 (3) ◽  
pp. 587-607 ◽  
Author(s):  
Anna Góra-Sochacka

Viroids are small (about 300 nucleotides), single-stranded, circular, non-encapsidated pathogenic RNA molecules. They do not code for proteins and thus depend on plant host enzymes for their replication and other functions. They induce plant diseases by direct interaction with host factors but the mechanism of pathogenicity is still unknown. They can alter the expression of selected plant genes important for growth and development. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Viroids of the Avsunviroidae family adopt a branched or quasi rod-like secondary structure in their native state. Members of the Pospiviroidae family adopt a rod-like secondary structure. In such native structures five structural/functional domains have been identified: central (C), pathogenicity, variable and two terminal domains. The central conserved region (CCR) within the C domain characterizes viroids of the Pospiviroidae. Specific secondary structures of this region play an important role in viroid replication and processing. Viroids of the Avsunviroidae family lack a CCR but possess self-cleaving properties by forming hammerhead ribozyme structures; they accumulate and replicate in chloroplasts, whereas members of the Pospiviroidae family have a nuclear localization. Viroid replication occurs via a rolling circle mechanism using either a symmetric or asymmetric pathway in three steps, RNA transcription, processing and ligation.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 371
Author(s):  
Shachinthaka D. Dissanayaka Mudiyanselage ◽  
Ying Wang

Transcription is a fundamental process that mediates the interplay between genetic information and phenotype. Emerging evidence indicates that RNA polymerase II (Pol II) can catalyze transcription using both DNA and RNA templates. It is well established that Pol II initiates de novo transcription on DNA templates. However, it is unclear whether Pol II performs de novo transcription or relies on primers for initiation (primed transcription) on RNA templates. Using potato spindle tuber viroid (PSTVd) as a model, we presented evidence showing that circular PSTVd templates are critical for the synthesis of longer-than-unit-length (−)-strand products, which supports the de novo transcription based on the asymmetric rolling circle model of PSTVd replication. We further showed that the crucial factor for primed transcription, transcription factor IIS (TFIIS), is dispensable for PSTVd replication in cells. Together, our data support the de novo transcription on PSTVd RNA templates catalyzed by Pol II. This result has significant implications in understanding the mechanism and machinery underlying Pol II-catalyzed transcription using other RNA templates.


2007 ◽  
Vol 81 (8) ◽  
pp. 4363-4366 ◽  
Author(s):  
Diego Molina-Serrano ◽  
Loreto Suay ◽  
María L. Salvador ◽  
Ricardo Flores ◽  
José-Antonio Daròs

ABSTRACT The family Avsunviroidae comprises four viroid species with the ability to form hammerhead ribozymes that mediate self-cleavage of the multimeric plus and minus strands resulting from replication in the chloroplast through a symmetric rolling-circle mechanism. Research on these RNAs is restricted by their host range, which is limited to the plants wherein they were initially identified and some closely related species. Here we report cleavage and ligation in transplastomic Chlamydomonas reinhardtii expressing plus- and minus-strand dimeric transcripts of representative members of the family Avsunviroidae. Despite the absence of viroid RNA-RNA transcription, the C. reinhardtii-based system can be used to address intriguing questions about viroid RNA processing and, in particular, about the cellular factors involved in cleavage and ligation.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Benjamin D. Lee ◽  
Eugene V. Koonin

Viroids are a unique class of plant pathogens that consist of small circular RNA molecules, between 220 and 450 nucleotides in size. Viroids encode no proteins and are the smallest known infectious agents. Viroids replicate via the rolling circle mechanism, producing multimeric intermediates which are cleaved to unit length either by ribozymes formed from both polarities of the viroid genomic RNA or by coopted host RNAses. Many viroid-like small circular RNAs are satellites of plant RNA viruses. Ribozyviruses, represented by human hepatitis delta virus, are larger viroid-like circular RNAs that additionally encode the viral nucleocapsid protein. It has been proposed that viroids are direct descendants of primordial RNA replicons that were present in the hypothetical RNA world. We argue, however, that much later origin of viroids, possibly, from recently discovered mobile genetic elements known as retrozymes, is a far more parsimonious evolutionary scenario. Nevertheless, viroids and viroid-like circular RNAs are minimal replicators that are likely to be close to the theoretical lower limit of replicator size and arguably comprise the paradigm for replicator emergence. Thus, although viroid-like replicators are unlikely to be direct descendants of primordial RNA replicators, the study of the diversity and evolution of these ultimate genetic parasites can yield insights into the earliest stages of the evolution of life.


2008 ◽  
Vol 82 (20) ◽  
pp. 10321-10325 ◽  
Author(s):  
María-Eugenia Gas ◽  
Diego Molina-Serrano ◽  
Carmen Hernández ◽  
Ricardo Flores ◽  
José-Antonio Daròs

ABSTRACT Members of the family Pospiviroidae, like Citrus exocortis viroid (CEVd), replicate through an RNA-based asymmetric rolling-circle mechanism in which oligomeric plus-strand [(+)] RNA intermediates are cleaved to monomeric linear (ml) RNA and then circularized. Here we show, by rapid amplification of 5′ and 3′ cDNA ends and in vitro ligation assays, that ml CEVd (+) RNA resulting from cleavage of a dimeric transcript transgenically expressed in Arabidopsis thaliana contains 5′-phosphomonoester and 3′-hydroxyl termini. The nature of these termini and the double-stranded structure previously proposed as the substrate for cleavage in vivo suggest that a type III RNase catalyzes cleavage and an RNA ligase distinct from tRNA ligase promotes circularization.


2016 ◽  
Vol 198 (24) ◽  
pp. 3355-3366 ◽  
Author(s):  
Laurel D. Wright ◽  
Alan D. Grossman

ABSTRACTIntegrative and conjugative elements (ICEs), also known as conjugative transposons, are self-transferable elements that are widely distributed among bacterial phyla and are important drivers of horizontal gene transfer. Many ICEs carry genes that confer antibiotic resistances to their host cells and are involved in the dissemination of these resistance genes. ICEs reside in host chromosomes but under certain conditions can excise to form a plasmid that is typically the substrate for transfer. A few ICEs are known to undergo autonomous replication following activation. However, it is not clear if autonomous replication is a general property of many ICEs. We found that Tn916, the first conjugative transposon identified, replicates autonomously via a rolling-circle mechanism. Replication of Tn916was dependent on the relaxase encoded byorf20of Tn916. The origin of transfer of Tn916,oriT(916), also functioned as an origin of replication. Using immunoprecipitation and mass spectrometry, we found that the relaxase (Orf20) and the two putative helicase processivity factors (Orf22 and Orf23) encoded by Tn916likely interact in a complex and that the Tn916relaxase contains a previously unidentified conserved helix-turn-helix domain in its N-terminal region that is required for relaxase function and replication. Lastly, we identified a functional single-strand origin of replication (sso) in Tn916that we predict primes second-strand synthesis during rolling-circle replication. Together these results add to the emerging data that show that several ICEs replicate via a conserved, rolling-circle mechanism.IMPORTANCEIntegrative and conjugative elements (ICEs) drive horizontal gene transfer and the spread of antibiotic resistances in bacteria. ICEs reside integrated in a host genome but can excise to create a plasmid that is the substrate for transfer to other cells. Here we show that Tn916, an ICE with broad host range, undergoes autonomous rolling-circle replication when in the plasmid form. We found that the origin of transfer functions as a double-stranded origin of replication and identified a single-stranded origin of replication. It was long thought that ICEs do not undergo autonomous replication. Our work adds to the evidence that ICEs replicate autonomously as part of their normal life cycle and indicates that diverse ICEs use the same replicative mechanism.


1989 ◽  
Vol 9 (8) ◽  
pp. 3543-3547
Author(s):  
T W Nilsen ◽  
J Shambaugh ◽  
J Denker ◽  
G Chubb ◽  
C Faser ◽  
...  

The parasitic nematode Ascaris spp. contains a 22-nucleotide spliced-leader (SL) sequence identical to the trans-SL previously described in Caenorhabditis elegans and other nematodes. The SL comprises the first 22 nucleotides of a approximately 110-base RNA and is transcribed by RNA polymerase II. The SL RNA contains a trimethylguanosine cap and a consensus Sm binding site. Furthermore, the Ascaris SL RNA has the potential to adopt a secondary structure which is nearly identical to potential secondary structures of similar SL RNAs in C. elegans and Brugia malayi.


Sign in / Sign up

Export Citation Format

Share Document