Nitric Oxide Detection and Visualization in Biological Systems. Applications of the FNOCT Method

2000 ◽  
Vol 381 (7) ◽  
pp. 575-582 ◽  
Author(s):  
Petra Meineke ◽  
Ursula Rauen ◽  
Herbert de Groot ◽  
Hans-Gert Korth ◽  
Reiner Sustmann

Abstract Fluorescent Nitric Oxide Cheletropic Traps (FNOCTs) were applied to specifically trap nitric oxide (NO) with high sensitivity. The fluorescent oquinoid ?electron system of the FNOCTs (? = 460 nm, ? = 600 nm) reacts rapidly with NO to a fluorescent phenanthrene system (? = 380 nm, ? = 460 nm). The cyclic nitroxides thus formed react further to nonradical products which exhibit identical fluorescence properties. Using the acid form of the trap (FNOCT-4), NO release by spermine NONOate and by lipopolysaccharide (LPS) activated alveolar macrophages were studied. A maximum extracellular release of NO of 37.5 nmol h[-1] (10[6] cells)[-1] from the macrophages was determined at 11 h after activation. Furthermore, intracellular NO release by LPSactivated macrophages and by microvascular omentum endothelial cells stimulated by the Ca[2+] ionophore A-23187, respectively, was monitored on the single cell level by means of fluorescence microscopy. After loading the cells with the membranepermeating acetoxymethylester derivative FNOCT-5,which is hydrolyzed to a nonpermeating dicarboxylate by intracellular hydrolases, NO formation by the endothelial cells started immediately upon stimulation, whereas start of NO production by the macrophages was delayed with a variation between 4 and 8 h for individual cells. These results demonstrate that the FNOCTs can be used to monitor NO release from single cells, as well as from NOdonating compounds, with high sensitivity and with temporal and spatial resolution.

2003 ◽  
Vol 285 (2) ◽  
pp. H507-H515 ◽  
Author(s):  
G. P. Nase ◽  
J. Tuttle ◽  
H. G. Bohlen

Many studies have suggested that endothelial cells can act as “oxygen sensors” to large reductions in oxygen availability by increasing nitric oxide (NO) production. This study determined whether small reductions in oxygen availability enhanced NO production from in vivo intestinal arterioles, venules, and parenchymal cells. In vivo measurements of perivascular NO concentration ([NO]) were made with NO-sensitive microelectrodes during normoxic and reduced oxygen availability. During normoxia, intestinal first-order arteriolar [NO] was 397 ± 26 nM ( n = 5), paired venular [NO] was 298 ± 34 nM ( n = 5), and parenchymal cell [NO] was 138 ± 36 nM ( n = 3). During reduced oxygen availability, arteriolar and venular [NO] significantly increased to 695 ± 79 nM ( n = 5) and 534 ± 66 nM ( n = 5), respectively, whereas parenchymal [NO] remained unchanged at 144 ± 34 nM ( n = 4). During reduced oxygenation, arteriolar and venular diameters increased by 15 ± 3% and 14 ± 5%, respectively: NG-nitro-l-arginine methyl ester strongly suppressed the dilation to lower periarteriolar Po2. Micropipette injection of a CO2 embolus into arterioles significantly attenuated arteriolar dilation and suppressed NO release in response to reduced oxygen availability. These results indicated that in rat intestine, reduced oxygen availability increased both arteriolar and venular NO and that the main site of NO release under these conditions was from endothelial cells.


2001 ◽  
Vol 170 (2) ◽  
pp. 433-440 ◽  
Author(s):  
L Kalinowski ◽  
LW Dobrucki ◽  
T Malinski

Parathyroid hormone (PTH)-related protein (PTHrP) is produced in smooth muscles and endothelial cells and is believed to participate in the local regulation of vascular tone. No direct evidence for the activation of endothelium-derived nitric oxide (NO) signaling pathway by PTHrP has been found despite attempts to identify it. Based on direct in situ measurements, it is reported here for the first time that the human PTH/PTHrP receptor analogs, hPTH(1--34) and hPTHrP(1--34), stimulate NO release from a single endothelial cell. A highly sensitive porphyrinic microsensor with a response time of 0.1 ms and a detection limit of 1 nmol/l was used for the measurement of NO. Both hPTH(1--34) and hPTHrP(1--34) stimulated NO release at nanomolar concentrations. The peak concentration of 0.1 micromol/l hPTH(1--34)- and 0.1 micromol/l hPTHrP(1--34)-stimulated NO release was 175+/-9 and 248+/-13 nmol/l respectively. This represents about 30%--40% of maximum NO concentration recorded in the presence of (0.1 micromol/l) calcium ionophore. Two competitive PTH/PTHrP receptor antagonists, 10 micromol/l [Leu(11),d -Trp(12)]-hPTHrP(7--34)amide and 10 micromol/l [Nle(8,18),Tyr(34)]-bPTH(3--34)amide, were equipotent in antagonizing hPTH(1--34)-stimulated NO release; [Leu(11),d -Trp(12)]-hPTHrP(7--34)amide was more potent than [Nle(8,18),Tyr(34)]-bPTH(3--34)amide in inhibiting hPTHrP(1--34)-stimulated NO release. The PKC inhibitor, H-7 (50 micromol/l), did not change hPTH(1--34)- and hPTHrP(1--34)-stimulated NO release, whereas the combined effect of 10 micromol/l of the cAMP antagonist, Rp-cAMPS, and 50 micromol/l of the calmodulin inhibitor, W-7, was additive. The present studies show that both hPTH(1--34) and hPTHrP(1--34) activate NO production in endothelial cells. The activation of NO release is through PTH/PTHrP receptors and is mediated via the calcium/calmodulin pathway.


2010 ◽  
Vol 298 (4) ◽  
pp. L564-L574 ◽  
Author(s):  
Sreedhar Bodiga ◽  
Stephanie K. Gruenloh ◽  
Ying Gao ◽  
Vijay L. Manthati ◽  
Narsimhaswamy Dubasi ◽  
...  

We have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) increases both superoxide and nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs). The current study was designed to determine mechanisms underlying 20-HETE-stimulated NO release, and particularly the role of NADPH oxidase, reactive oxygen species, and PI3-kinase in stimulated NO release. Intracellular hydrogen peroxide (H2O2) and NO production were detected by dichlorofluorescein or dihydrorhodamine and diaminofluorescein fluorescence, respectively. Activation of endothelial nitric oxide synthase (eNOS) (Ser1179) and Akt (Ser473) was assessed by comparing the ratio of phosphorylated to total protein expression by Western blotting. Addition of 20-HETE to BPAECs caused an increase in superoxide and hydrogen peroxide, but not peroxynitrite. 20-HETE-evoked activation of Akt and eNOS, as well as enhanced NO release, are dependent on H2O2 as opposed to superoxide in that these endpoints are blocked by PEG-catalase and not PEG-superoxide dismutase. Similarly, 20-HETE-stimulated NO production in BPAECs is blocked by NADPH oxidase inhibitors apocynin or gp91 blocking peptide, and by PI3-kinase/Akt blockers wortmannin, LY-294002, or Akt inhibitor, implicating NADPH oxidase, PI3-kinase, and Akt signaling pathways, respectively, in this process. Together, these data suggest the following scheme: 20-HETE stimulates NADPH oxidase-dependent formation of superoxide. Superoxide is rapidly dismutated to hydrogen peroxide, which then mediates activation of PI3-kinase/Akt, phosphorylation of eNOS, and enhanced release of NO from eNOS in response to 20-HETE in BPAECs.


1998 ◽  
Vol 330 (2) ◽  
pp. 695-699 ◽  
Author(s):  
Frédérique LANTOINE ◽  
Lahcen IOUZALEN ◽  
Marie-Aude DEVYNCK ◽  
Elisabeth MILLANVOYE-van BRUSSEL ◽  
Monique DAVID-DUFILHO

The causal relationships between cytosolic free-Ca2+ concentration ([Ca2+]i) increases and production of nitric oxide (NO) have been investigated mostly with indirect methods and remain unclear. Here we demonstrate, by direct real-time measurements of [NO] with a porphyrinic microsensor, that Ca2+ entry, but not an increase in [Ca2+]i, is required for triggering of NO production in human endothelial cells. Histamine, ranging from 0.1 to 100 μM, increased both NO production and [Ca2+]i when given in a single dose. However, histamine caused increased NO release but induced progressively smaller [Ca2+]i changes when cumulatively added. In the absence of a transmembrane Ca2+ gradient, no significant NO release was detectable, despite the marked Ca2+ peak induced by histamine. Inhibition of Ca2+ entry by SK&F 96365 abolished histamine-elicited NO production but only reduced the transient [Ca2+]i rise. The suppression of the sustained [Ca2+]i response under these two conditions suggests that NO release was closely associated with Ca2+ entry from the extracellular space. In addition, membrane depolarization, achieved by increasing the extracellular K+ concentration from 5 to 130 mM, reduced both the amplitude of histamine-induced sustained [Ca2+]i elevation and NO production. These results lead us to propose that the availability of numerous Ca2+ ions around the internal side of the plasma membrane would promote the association between nitric oxide synthase and calmodulin, thereby activating the enzyme.


2008 ◽  
pp. 885-892
Author(s):  
AS Diallo ◽  
M Sarr ◽  
HA Mostefai ◽  
N Carusio ◽  
M Pricci ◽  
...  

We recently reported that in vitro Cognac polyphenolic compounds (CPC) induce NO-dependent vasorelaxant effects and stimulate cardiac function. In the present study, we aim to investigate the effect of CPC on both nitric oxide (NO) and superoxide anions (O(2)(-)) production in cultured human endothelial cells. In addition, its effect on the bradykinin (BK)-induced NO production was also tested. The role and sources of O(2)(-) in the concomitant effect of BK plus CPC were pharmacologically determined. NO and O(2)(-) signals were measured using electron paramagnetic resonance technique using specific spin trappings. Both, CPC and BK induced an increase in NO production in human endothelial cells. The combination of both further enhanced NO release. The capacity of CPC plus BK to increase NO signal was blunted by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and was enhanced in the presence either of superoxide dismutase or catalase. Moreover, CPC plus BK response was greater after inhibition of either NADPH oxidase by apocynin or xanthine oxidase by allopurinol but it was not affected by rotenone. CPC did not affect O(2)(-) level either alone or after its increase upon lipopolysaccharide treatment. Finally, the capacity of BK alone to increase NO was enhanced either by apocynin or allopurinol. Altogether, these data demonstrate that CPC is able to directly increase NO production without affecting O(2)(-) and enhances the BK-induced NO production in human endothelial cells. The data highlight the ability of BK to stimulate not only NADPH oxidase- but also xanthine oxidase-inhibitor sensitive mechanisms that reduce its efficiency in increasing NO either alone or in the presence of CPC. These results bring pharmacological evidence for vascular protection by CPC via its potentiating effect of BK response in terms of endothelial NO release.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Emily E Morin ◽  
Yanhong Guo ◽  
Rui Kuai ◽  
Gergely Lautner ◽  
Mark E Meyerhoff ◽  
...  

Introduction: Sphingosine-1-phosphate (S1P) is a potent anti-inflammatory signaling lipid carried in the body by circulating HDL. HDL has been shown to exhibit anti-inflammatory activities through activation of endothelial nitric oxide synthase (eNOS) and subsequent production and release of nitric oxide (NO) by endothelial cells. Objective: The aim of this study is to use synthetic HDL particles to selectively deliver S1P to the site of arterial plaques in order to exert anti-inflammatory activity and modulate the progression of atherosclerosis. Methods/Results: Synthetic HDL (sHDL) particles were prepared using the ApoA1 mimetic peptide 22A (PVLDLFRELLNELLEALKQKLK), dipalmitoylphosphatidylcholine (DPPC) and sphingomyelin. We also prepared sHDL containing either the hydrophobic dye, DiD, or S1P to assess the capability of sHDL to effectively reach atheroma site and induce nitric oxide (NO) release, respectively. The purity of all particles was determined to be > 97% and average particle size was 9.6 ± 0.4 nm for all preparations. To measure sHDL accumulation in the plaque, ApoE -/- mice were intravenously injected with 0.2 mg/kg HDL-DiD. Whole aortas were excised and analysed by IVUS imaging system, revealing significant accumulation of sHDL-DiD in the atherosclerotic lesions. We then tested the ability of sHDL to deliver S1P in vitro and induce NO production by treating human umbilical vein endothelial cells (HUVEC) with 1 mg/mL of 22A-DPPC-sHDL containing 0, 0.05, 0.5, or 5 nmol/mL of S1P using free 22A peptide (1 mg/mL) and saline as controls, and analyzing media by ozone chemiluminescence. Blank sHDL particles increased NO production two-fold over controls (0.27 ± 0.02 μM for 22A-DPPC-sHDLDL, 0.13 ± 0.01 μM PBS and 0.14 ± 0.02 μM for 22A peptide), while HDL-S1P further increased NO release: 0.35 ± 0.03, 0.44 ± 0.01, and 0.59 ± 0.01 μM for HDL with 0.05, 0.5, and 5 nmol/mL S1P, respectively. Conclusions: Our studies show that HDL is capable of delivering hydrophobic cargo to atherosclerotic plaques, making HDL a promising platform to deliver S1P for modulation vascular inflammation and atherosclerosis. In vitro studies have revealed that HDL-S1P is able to increase NO production 2 to 4-fold over saline control setting the basis for future in vivo studies.


2009 ◽  
Vol 418 (3) ◽  
pp. 673-682 ◽  
Author(s):  
Ivan Mikula ◽  
Suzanne Durocher ◽  
Pavel Martasek ◽  
Bulent Mutus ◽  
Anny Slama-Schwok

Nitrite (NO2−) recycling to nitric oxide (NO) is catalysed by a number of enzymes and induces a protective vasodilation effect under hypoxia/ischaemia. In the present work, we tested the in vitro ability of the three NOS (nitric oxide synthase) isoforms to release NO from nitrite under anoxia using electrochemical detection, chemiluminescence and absorption spectroscopy. The release of free NO from anoxic nitrite solutions at 15 μM was specific to the endothelial NOS isoform (eNOS) and did not occur with the neuronal (nNOS) or inducible (iNOS) isoforms. Unlike xanthine oxidase, the eNOS reductase domain did not recycle nitrite to NO, and wild-type eNOS did not reduce nitrate. Our data suggest that structural and, by inference, dynamic differences between nNOS and eNOS in the distal haem side account for eNOS being the only isoform capable of converting nitrite into NO at pH 7.6. In human dermal microvascular endothelial cells under careful control of oxygen tension, the rates of NO formation determined by chemiluminescence were enhanced ∼3.6- and ∼8.3-fold under hypoxia (2 p.p.m. O2) and anoxia (argon) respectively compared with normoxia (∼22 p.p.m. O2) using 10 μM extracellular nitrite. NOS inhibitors inhibited this hypoxic NO release. Our data show that eNOS is unique in that it releases NO under all oxygen levels from normoxia to complete anoxia at physiological micromolar nitrite concentrations. The magnitude of the hypoxic NO release by the endothelial cells suggest that the endothelium could provide an appropriate response to acute episodic ischaemia and may explain the observed eNOS-expression-specific protective effect as a short-term response in animal models of acute hypoxia.


Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3343-3351 ◽  
Author(s):  
Malika Oubaha ◽  
Jean-Philippe Gratton

Abstract Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cells. However, in contrast to VEGF, Ang-1 protects blood vessels from increased plasma leakage, which contributes to their stabilization. Because eNOS-derived NO is central to increased permeability in response to VEGF, we investigated whether Ang-1 interferes with VEGF signaling to eNOS. We demonstrate that Ang-1 stimulation of endothelial cells inhibits VEGF-induced NO release and transendothelial permeability. In contrast to VEGF stimulation, Ang-1 causes a marked protein kinase C (PKC)–dependent increase in phosphorylation of eNOS on the inhibitory Thr497. Furthermore, using pharmacologic inhibitors, overexpression studies, and small interfering RNA-mediated gene silencing, we demonstrate that atypical PKCζ is responsible for phosphorylation of eNOS on Thr497 in response to Ang-1. In addition, PKCζ knockdown abrogates the capacity of Ang-1 to inhibit VEGF-induced NO release and endothelial permeability. Thus, inhibition of NO production by Ang-1, via phosphorylation of eNOS on Thr497 by PKCζ, is responsible, at least in part, for inhibition of VEGF-stimulated endothelial permeability by Ang-1.


2018 ◽  
Vol 19 (12) ◽  
pp. 3823 ◽  
Author(s):  
Wen-Tsan Weng ◽  
Chieh-Shan Wu ◽  
Feng-Sheng Wang ◽  
Chang-Yi Wu ◽  
Yi-Ling Ma ◽  
...  

α-melanocyte-stimulating hormone (α-MSH) has been characterized as a novel angiogenesis inhibitor. The homeostasis of nitric oxide (NO) plays an important role in neovascularization. However, it remains unclear whether α-MSH mitigates angiogenesis through modulation of NO and its signaling pathway. The present study elucidated the function and mechanism of NO signaling in α-MSH-induced angiogenesis inhibition using cultured human umbilical vein endothelial cells (HUVECs), rat aorta rings, and transgenic zebrafish. By Griess reagent assay, it was found α-MSH dose-dependently reduced the NO release in HUVECs. Immunoblotting and immunofluorescence analysis revealed α-MSH potently suppressed endothelial and inducible nitric oxide synthase (eNOS/iNOS) expression, which was accompanied with inhibition of nuclear factor kappa B (NF-κB) activities. Excessive supply of NO donor l-arginine reversed the α-MSH-induced angiogenesis inhibition in vitro and in vivo. By using antibody neutralization and RNA interference, it was delineated that melanocortin-1 receptor (MC1-R) and melanocortin-2 receptor (MC2-R) participated in α-MSH-induced inhibition of NO production and NF-κB/eNOS/iNOS signaling. This was supported by pharmaceutical inhibition of protein kinase A (PKA), the downstream effector of MC-Rs signaling, using H89 abolished the α-MSH-mediated suppression of NO release and eNOS/iNOS protein level. Therefore, α-MSH exerts anti-angiogenic function by perturbing NO bioavailability and eNOS/iNOS expression in endothelial cells.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Preston Mason ◽  
Hazem Dawoud ◽  
Samuel Sherratt ◽  
Peter Libby ◽  
Deepak L Bhatt ◽  
...  

Treatment with prescription, high dose, stable icosapent ethyl (IPE), which is eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), significantly reduced clinical events in high-risk patients with diabetes and other risk factors or cardiovascular disease (REDUCE-IT). Previous studies suggest that the benefits of EPA correlate positively with its levels and ratio to arachidonic acid (AA) in circulation. Unlike EPA, AA is an omega-6 fatty acid (O6FA) that, along with its metabolites, contributes to inflammation and diabetes. One mechanism of benefit of an increased EPA to AA ratio may be improved endothelial cell (EC) function, as evidenced by increased nitric oxide (NO) release and decreased nitroxidative (ONOO – ) stress. In this study, human umbilical vein endothelial cells (HUVECs) were pretreated with EPA or AA at equimolar levels (10 μM) at various time points (4-24 hr) in 5% FBS. Following treatment, the cells were stimulated with calcium ionophore and assayed for the ratio of NO and ONOO – release, an indicator of eNOS coupling, using tandem porphyrinic nanosensors. ECs treated with EPA had significantly greater NO release following stimulation compared with vehicle at all time points, including 17% and 21% at 4 and 24 hr, respectively (p<0.05 and p<0.01) without changes in eNOS expression. By contrast, AA did not significantly improve NO production. ECs treated with EPA also showed a non-significant reduction in ONOO - release by 10% at 4 hr and 14% at 24 hr. EPA, but not AA, increased NO/ONOO - release ratio by 42% (4.03 ± 0.06 vs 2.83 ± 0.05; p <0.01) by 24 hr. Thus, EPA increased NO bioavailability in human ECs, unlike AA, due to improved eNOS coupling and reduced oxidative stress. These findings support a preferential benefit of EPA on endothelial function as compared to AA and supports further investigation.


Sign in / Sign up

Export Citation Format

Share Document