scholarly journals Differentiation of the concentration of heavy metals and persistent organic pollutants in lake sediments depending on the catchment management (Lake Gopło case study)

2015 ◽  
Vol 8 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Włodzimierz Juśkiewicz ◽  
Włodzimierz Marszelewski ◽  
Wojciech Tylmann

Abstract This paper presents the results of the study on the concentration of heavy metals and persistent organic pollutants (POPs), including PAHs and PCBs, in the bottom sediments of Lake Gopło. This lake is significantly elongated (about 25 km); its longitudinal profile is diversified, and there are deeps and thresholds impeding the flow of water. The shoreline is varied, which is characteristic of tunnel valley lakes. The catchment has a typical agricultural character with a point arrangement of industrial centres. The analysis of the diversity of the concentration of heavy metals and POPs was based on 37 samples from two representative cores: one collected in the northern part of the lake, the catchment of which shows an industrial character, and the second one in the southern part where the catchment is agricultural in character. In the sediments, the content of the following heavy metals was analysed: Cu, Pb, Cd, Zn, Ni, Cr, Hg and As, as well as PAHs and PCBs. The sediment age was determined by the 210Pb dating method. In order to assess the contamination level of the bottom sediments with heavy metals, the contamination factor (CF) and degree of contamination (DC) were calculated. Moreover, the impact of the changes in the catchment’s land use over the past 100 years was determined. The results showed that the sediments from the industrial part of the lake significantly exceed the geochemical background for both the heavy metals from the group identified as industrial pollution and from the group of agricultural pollutants. The southern core shows only a slight increase in the amount of pollution from the agricultural group, lack of industrial pollution and a low degree of contamination. A slight increase in persistent organic pollutants is also recorded, without any apparent effect on the state of the deposited sediment. The 210PB dating enabled the main stages of human impact to be determined: the pre-industrial revolution, from the beginning of industrialisation to the 1950s, intensive human impact from the 1960s to the 1980s, and a gradual decrease in the human impact starting from the 1990s. In addition, attention was paid to the changing sedimentation rate.

Author(s):  
T.I. Висоцька ◽  
Т.В. Пічкур

The article studies the impact of persistent organic pollutants (POPs) on the environment. POPs are artificial substances for the environment. Nowadays, scientists have created more than 18 million chemical compounds, almost 100 000 of which are used in industry. It is widely understood that the pollution of the environment by persistent organic pollutants is due to their constant movement between the natural envelopes. Environmental studies show that regardless of sources (POPs) all the components of the biosphere are under their negative influence: surface water and groundwater, atmosphere, soil ecosystems, flora, and fauna. Measures that can be taken to prevent and reduce the impact of POPs on human health are conventionally divided into measures applied at the state level, and measures for the health maintenance, which should be used by each person, possessing certain knowledge about potential sources and properties of persistent organic pollutants. Considering the fact that POPs can remain in the environment for a long time, there is only one way to protect ourselves and future generations – it is to stop the production and use of POPs and to stop those production processes that use POPs. But this requires the efforts of the world community.


2022 ◽  
Vol 11 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Islam A. Abdelhafeez ◽  
Sayed A. El-Tohamy ◽  
Mokhtar A. Abd ul-Malik ◽  
Shaban A. A. Abdel-Raheem ◽  
Farida M.S. El-Dar

Organic pollutants cause many environmental problems to our environment because of their toxicity, non-degradation and ability to long-range transport. The most common organic pollutants are known as persistent organic pollutants (POPs) and are known as hydrocarbons. Effective techniques for the removal of hydrocarbons and heavy metals from soil have drawn great attention. Remediation techniques represent one of the most important of these techniques because of their gentle impact on the environment. The study highlights numerous methods for Physical and chemical remediation techniques with explanation of the ability of some plants and agricultural wastes for remediation.


2014 ◽  
Vol 87 (1-2) ◽  
pp. 381-387 ◽  
Author(s):  
Simonetta Corsolini ◽  
Stefania Ancora ◽  
Nicola Bianchi ◽  
Giacomo Mariotti ◽  
Claudio Leonzio ◽  
...  

2020 ◽  
Vol 21 (3-4) ◽  
pp. 250-258
Author(s):  
Xixiang Yin ◽  
Guolan Fan ◽  
Jianjun Liu ◽  
Tenglong Jiang ◽  
Lihong Wang

1998 ◽  
Vol 61 (1-3) ◽  
pp. 99-106 ◽  
Author(s):  
W de Vries ◽  
D.J Bakker ◽  
J.E Groenenberg ◽  
G.J Reinds ◽  
J Bril ◽  
...  

2015 ◽  
Vol 15 (11) ◽  
pp. 6549-6559 ◽  
Author(s):  
K. M. Hansen ◽  
J. H. Christensen ◽  
C. Geels ◽  
J. D. Silver ◽  
J. Brandt

Abstract. The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990–2000) and future (2090–2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on the transport of POPs to the Arctic is moderate relative to the effect of proposed changes in emissions, which is confirmed in this study. However, the model studies do not agree on whether climate change acts to reduce or increase environmental concentrations of POPs in the Arctic, and further work is needed to resolve this matter.


Baltica ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 51-62
Author(s):  
Alexander Krek ◽  
Aleksandr Danchenkov ◽  
Marina Ulyanova ◽  
Darya Ryabchuk

The scope of the study was to assess the impact of potential sources of Cu, Zn, Co, Ni, and Cr on bottom sediments of the Russian sector of the south-eastern Baltic Sea. A total of 68 samples were taken and analyzed for grain-size (laser diffraction and sieve method) and heavy metal concentration (atomic absorption spectroscopy method). To avoid the influence of the sorption capacity of the fine-grained sediments to accumulate the pollutants, the normalization of the heavy metal concentration to Fe was applied. The environmental indices (contamination factor and modified degree of contamination) were calculated. The research has shown the contribution of oil platform, pipelines, ports and wastewater treatment facilities on the geochemical composition of bottom sediments. The authors have identified the level of heavy metals contamination of the middle parts of the Curonian and Vistula spits as a result of alongshore transport of pollutants.


Sign in / Sign up

Export Citation Format

Share Document