scholarly journals ITGB5 mutation discovered in a Chinese family with blepharophimosis-ptosis-epicanthus inversus syndrome

2021 ◽  
Vol 16 (1) ◽  
pp. 1268-1277
Author(s):  
Tianling Cheng ◽  
Xiaobin Yuan ◽  
Shaopeng Yuan ◽  
Jianying Zhu ◽  
Shengjian Tang ◽  
...  

Abstract Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal-dominant genetic disorder, and mutations in the forkhead box L2 (FOXL2) gene are one of the major genetic causes. As this study shows, there are many patients with BPES who do not have FOXL2 mutations, as the screening results in all family members were negative. Using whole-exome sequence analysis, we discovered another possible mutational cause of BPES in integrin subunit beta 5 (ITGB5). The ITGB5 mutation (c.608T>C, p.Ile203Thr) appears in the base sequence of all BPES+ patients in this family, and it appears to be a three-generation-inherited mutation. It can cause changes in base sequence and protein function, and there may be cosegregation of disease phenotypes. ITGB5 is located on the long arm of chromosome three (3q21.2) and is close to the known pathogenic gene FOXL2 (3q23). This study is the first to report ITGB5 mutations in BPES, and we speculate that it may be directly involved in the pathogenesis of BPES or indirectly through the regulation of FOXL2.

Author(s):  
Qing Li ◽  
Chengfeng Wang ◽  
Wei Li ◽  
Zaiqiang Zhang ◽  
Shanshan Wang ◽  
...  

AbstractPontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL) is a rare hereditary cerebral small vessel disease. We report a novel collagen type IV alpha 1 (COL4A1) gene mutation in a Chinese family with PADMAL. The index case was followed up for 6 years. Neuroimaging, whole-exome sequencing, skin biopsy, and pedigree analysis were performed. She initially presented with minor head injury at age 38. MRI brain showed chronic lacunar infarcts in the pons, left thalamus, and right centrum semiovale. Extensive workup was unremarkable except for a patent foramen ovale (PFO). Despite anticoagulation, PFO closure, and antiplatelet therapy, the patient had recurrent lacunar infarcts in the pons and deep white matter, as well as subcortical microhemorrhages. Whole-exome sequencing demonstrated a novel c.*34G > T mutation in the 3′ untranslated region of COL4A1 gene. Skin biopsy subsequently demonstrated thickening of vascular basement membrane, proliferation of endothelial cells, and stenosis of vascular lumen. Three additional family members had gene testing and 2 of them were found to have the same heterozygous mutation. Of the 18 individuals in the pedigree of 3 generations, 12 had clinical and MRI evidence of PADMAL. The mechanisms of both ischemic and hemorrhagic stroke are likely the overexpression of COLT4A1 in the basement membrane and frugality of the vessel walls. Our findings suggest that the novel c.*34G > T mutation appears to have the same functional consequences as the previously reported COL4A1 gene mutations in patients with PADMAL and multi-infarct dementia of Swedish type.


2021 ◽  
Vol 8 ◽  
pp. 2329048X2110065
Author(s):  
Nesrin Şenbil ◽  
Zeynep Arslan ◽  
Derya Beyza Sayın Kocakap ◽  
Yasemin Bilgili

Mowat–Wilson syndrome (MWS) is an autosomal dominant genetic disorder caused by ZEB2 gene mutations, manifesting with unique facial characteristics, moderate to severe intellectual problems, and congenital malformations as Hirschsprung disease, genital and ophthalmological anomalies, and congenital cardiac anomalies. Herein, a case of 1-year-old boy with isolated agenesis of corpus callosum (IACC) in the prenatal period is presented. He was admitted postnatally with Hirschsprung disease (HSCR), hypertelorism, uplifted earlobes, deeply set eyes, frontal bossing, oval-shaped nasal tip, ‘‘M’’ shaped upper lip, opened mouth and prominent chin, and developmental delay. Hence, MWS was primarily considered and confirmed by the ZEB2 gene mutation analysis. His karyotype was normal. He had a history of having a prenatally terminated brother with similar features. Antenatally detected IACC should prompt a detailed investigation including karyotype and microarray; even if they are normal then whole exome sequencing (WES) should be done.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bing-Bing Guo ◽  
Jie-Yuan Jin ◽  
Zhuang-Zhuang Yuan ◽  
Lei Zeng ◽  
Rong Xiang

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia with an estimated incidence of ~1/60000 that is characterized by disproportionate short stature, brachydactyly, joint laxity, and early-onset osteoarthritis. COMP encodes the cartilage oligomeric matrix protein, which is expressed predominantly in the extracellular matrix (ECM) surrounding the cells that make up cartilage, ligaments, and tendons. Mutations in COMP are known to give rise to PSACH. In this study, we identified a novel nucleotide mutation (NM_000095.2: c.1317C>G, p.D439E) in COMP responsible for PSACH in a Chinese family by employing whole-exome sequencing (WES) and built the structure model of the mutant protein to clarify its pathogenicity. The novel mutation cosegregated with the affected individuals. Our study expands the spectrum of COMP mutations and further provides additional genetic testing information for other PSACH patients.


2019 ◽  
Vol 09 (02) ◽  
pp. 117-120
Author(s):  
Pavalan Selvam ◽  
Shekhar Singh ◽  
Angita Jain ◽  
Herjot Atwal ◽  
Paldeep S. Atwal

AbstractOtospondylomegaepiphyseal dysplasia (OSMED) is an inherited autosomal dominant and recessive skeletal dysplasia caused by both heterozygous and homozygous pathogenic variants in COL11A2 encoding the α2(XI) collagen chains, a part of type XI collagen. Here, we describe a 2-year-old girl presenting from birth with a phenotype suggestive of OSMED. On whole exome sequence analysis of the family via commercially available methods, we detected two novel heterozygous pathogenic variants in the proband. In addition, we reviewed the phenotype of autosomal recessive OSMED cases with COL11A2 pathogenic variants reported to date and quantitatively highlighted the phenotypic spectrum.


2021 ◽  
Author(s):  
Shaoyi Mei ◽  
Yi Wu ◽  
Yan Wang ◽  
Yubo Cui ◽  
Miao Zhang ◽  
...  

Congenital cataract, an ocular disease predominantly occurring within the first decade of life, is one of the leading causes of blindness in children. Through whole exome sequencing of a Chinese family with congenital cataract, we identified a disease-causing mutation (p.G1943E) in PIKFYVE, which affecting the PIP kinase domain of the PIKfyve protein. We demonstrated that heterozygous/homozygous disruption of PIKfyve kinase domain, instead of overexpression of PIKFYVEG1943E in zebrafish mimicked the cataract defect in human patients, suggesting that haploinsufficiency, rather than dominant-negative inhibition of PIKfyve activity caused the disease. Phenotypical analysis of pikfyve zebrafish mutants revealed that loss of Pikfyve caused aberrant vacuolation (accumulation of Rab7+Lc3+ amphisomes) in lens cells, which was significantly alleviated by treatment with the V-ATPase inhibitor bafilomycin A1 (Baf-A1). Collectively, we identified PIKFYVE as a novel causative gene for congenital cataract and demonstrated the potential application of Baf-A1 in treatment of congenital cataract.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Zhou ◽  
Yaru Zhai ◽  
Lulin Huang ◽  
Bo Gong ◽  
Jie Li ◽  
...  

Congenital cataract is the most common cause of the visual disability and blindness in childhood. This study aimed to identify gene mutations responsible for autosomal dominant congenital cataract (ADCC) in a Chinese family using next-generation sequencing technology. This family included eight unaffected and five affected individuals. After complete ophthalmic examinations, the blood samples of the proband and two available family members were collected. Then the whole exome sequencing was performed on the proband and Sanger sequencing was applied to validate the causal mutation in the two family members and control samples. After the whole exome sequencing data were filtered through a series of existing variation databases, a heterozygous mutation c.499T<G (p.E167X) in CRYBB2 gene was found. And the results showed that the mutation cosegregated with the disease phenotype in the family and was absolutely absent in 1000 ethnicity-matched control samples. Thus, the heterozygous mutation c.499T<G (p.E167X) in CRYBB2 was the causal mutation responsible for this ADCC family. In conclusion, our findings revealed a novel stopgain mutation c.499T<G (p.E167X) in the exon 6 of CRYBB2 which expanded the mutation spectrum of CRYBB2 in Chinese congenital cataract population and illustrated the important role of CRYBB2 in the genetics research of congenital cataract.


2020 ◽  
Author(s):  
Juan Wu ◽  
Dongna Chen ◽  
Hui Huang ◽  
Ning Luo ◽  
Huishuang Chen ◽  
...  

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. HGF is genetically heterogeneous and usually be transmitted as an autosomal-dominant inheritance pattern, also can be as autosomal-recessive or occur sporadically. Currently only two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here we report thirteen individuals with autosomal-dominant non-syndromic HGF from a large four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (NM_001099220.3: c.2812G>A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as reported from the Genome Aggregation Database, Exome Aggregation Consortium (ExAC) and 1000 Genomes. ZNF862 is a predicted intracellular protein which function is not yet identified, as a zinc finger protein it may be involved in transcriptional regulation. ZNF862 is expressed ubiquitously across tissues, it may play various roles under different physiological condition. Here for the first time we identify the physiological role of ZNF862 for the association with the HGF trait.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Xia ◽  
Yijie Feng ◽  
Lu Xu ◽  
Xiaoyang Chen ◽  
Feng Gao ◽  
...  

Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) are two common kinds of neuromuscular disorders sharing various similarities in clinical manifestations. SMA is an autosomal recessive genetic disorder that results from biallelic mutations of the survival motor neuron 1 gene (SMN1; OMIM 600354) on the 5q13 chromosome. DMD is an X-linked disorder caused by defects in the DMD gene (OMIM 300377) on the X chromosome. Here, for the first time, we report a case from a Chinese family who present with clinical manifestations of both two diseases, including poor motor development and progressive muscle weakness. We identified a homozygous deletion in exons 7 and 8 of the SMN1 gene and a deletion in exon 50 of the DMD gene by whole-exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA). This case expands our understanding of diagnosis for synchronous SMA and DMD and highlights the importance of various genetic testing methods, including WES, in differential diagnosis of neuromuscular diseases.


2021 ◽  
Author(s):  
Zhi-Bo Lin ◽  
Jin Li ◽  
Hai-Sen Sun ◽  
A-Yong Yu ◽  
Shi-Hao Chen ◽  
...  

Abstract Background: Congenital cataract-microcornea syndrome (CCMC) is characterized by the association of congenital cataract and microcornea without any other systemic anomaly or dysmorphism. Although several causative genes have been reported in patients with CCMC, the genetic etiology of CCMC is yet to be clearly understood. Purpose: To unravel the genetic cause of autosomal dominant family with CCMC.Methods: All patients and available family members underwent a comprehensive ophthalmologic clinical examination in the hospital by expert ophthalmologists and carried out to clinically diagnosis. All the patients were screened by whole-exome sequencing and then validated using co-segregation by Sanger sequencing. Results: Four CCMC patients from a Chinese family, and five unaffected family members were enrolled in this study. Using whole-exome sequencing, missense mutation c.295G>T (p.a99s, NM_003106.4) in the SOX2 gene was identified and validated by segregation analysis. In addition, this missense mutation was predicted to be damaging by multiple predictive tools. Variant p.Ala99Ser was located in a conservation high mobility group (HMG)-box domain in SOX2 protein, with a potential pathogenic impact of p.Ala99Ser on protein level.Conclusions: A novel missense mutation (c.295G>T, p.Ala99Ser) in the SOX2 gene was found in this Han Chinese family with congenital cataract and microcornea. Our study firstly determined that mutations in SOX2 were associated with CCMC, warranting further investigations on the pathogenesis of this disorder. This result expands the mutation spectrum of SOX2 and provides useful information to study the molecular pathogenesis of CCMC.


Sign in / Sign up

Export Citation Format

Share Document