Researches Regarding the Influence of Alloying Elements on the Mechanical Properties of Lamellar Graphite Cast Iron

Author(s):  
Elena Valentina Stoian ◽  
Vasile Bratu ◽  
Cristiana Maria Enescu ◽  
Dan Nicolae Ungureanu

Abstract Aim of the study is to present the technological process of obtaining cast iron with lamellar graphite for use in the manufacture of cylinder liners, and to identify the main alloying elements and track their influence on the mechanical properties of cast iron with lamellar graphite. Also paper presents analysis of 20 batches of cast iron with lamellar graphite, which are made of cylinder liners, in terms of chemical composition and the mechanical properties. After the analysis of the 20 castings of cast iron Fc 250 it is observed that: the increase in the carbon content shows a decrease of the tensile strength and hardness of the gray cast iron; the increase in silicon content shows a decrease in hardness and tensile strength. Decreasing the amount of graphite and especially the alloy of silicon iron lead to hardness increase 1% Si increases hardness by 50 HB). A statistical analysis has been performed on the data obtained that accounts for changes in alloying additions. A modeling and optimization of mechanical properties (tensile strength and hardness) was performed according to the percentages of carbon, silicon and manganese. Mathematical modeling found that the hardness and traction resistance of the cast iron decreased with the increase in carbon, silicon and manganese content.

2020 ◽  
Vol 33 (4-5) ◽  
pp. 201-217
Author(s):  
F. F. O. Lima ◽  
L. F. Bauri ◽  
H. B. Pereira ◽  
C. R. F. Azevedo

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


Author(s):  
Edney Deschauer Rejowski ◽  
Edmo Soares ◽  
Ingo Roth ◽  
Steffen Rudolph

With the increase of combustion loading and the trend to reduce engine size, there is a need for thinner but stronger wet cylinder liners. While most of the current cylinder liners are made of gray cast iron, due to its good tribological behavior, machinability performance and competitive price, alternative casting materials like compact graphite iron, ductile iron and even steel are being considered to cover the future engine demands. In this paper, a new ductile iron (DI) cast material for wet cylinder liners is presented. The material has about 60 and 70% higher limits respectively for tensile stress and fatigue resistance as compared to conventional gray cast irons, but without penalty on the tribological properties. There is also a potential improvement to avoid cavitation on the outside surface due to its higher young modulus, which also equates to a higher stiffness. The tested cylinder liners were induction hardened on the running surface and a slide hone process was used to improve wear and scuffing resistance. The liners were tested in a HDD engine with PCP of 245 bar and showed similar wear as observed with conventional cylinder liners of gray cast iron material. The DI cylinder liners were also tested in an abusive scuffing engine test without any concern. The improved mechanical properties of the described new DI material introduce possibilities to reduce liner wall thickness or increase specific output. The preliminary evaluation in this paper showed that this new material is feasible for HDD diesel engines with PCP up to 250 bar. In cases that the customer needs to increase the bore diameter for output reasons there is the potential to reduce the liner wall thickness up to 25% based on high mechanical properties (UTS, Young Modulus and fatigue strength). In both cases, it’s recommended a FEA analysis to support the new component design.


Sign in / Sign up

Export Citation Format

Share Document