scholarly journals Performance criteria and quality indicators for the post-analytical phase

Author(s):  
Laura Sciacovelli ◽  
Ada Aita ◽  
Andrea Padoan ◽  
Michela Pelloso ◽  
Giorgia Antonelli ◽  
...  

AbstractQuality indicators (QIs) used as performance measurements are an effective tool in accurately estimating quality, identifying problems that may need to be addressed, and monitoring the processes over time. In Laboratory Medicine, QIs should cover all steps of the testing process, as error studies have confirmed that most errors occur in the pre- and post-analytical phase of testing. Aim of the present study is to provide preliminary results on QIs and related performance criteria in the post-analytical phase.This work was conducted according to a previously described study design based on the voluntary participation of clinical laboratories in the project on QIs of the Working Group “Laboratory Errors and Patient Safety” (WG-LEPS) of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).Overall, data collected highlighted an improvement or stability in performances over time for all reported indicators thus demonstrating that the use of QIs is effective in the quality improvement strategy. Moreover, QIs data are an important source for defining the state-of-the-art concerning the error rate in the total testing process. The definition of performance specifications based on the state-of-the-art, as suggested by consensus documents, is a valuable benchmark point in evaluating the performance of each laboratory.Laboratory tests play a relevant role in the monitoring and evaluation of the efficacy of patient outcome thus assisting clinicians in decision-making. Laboratory performance evaluation is therefore crucial to providing patients with safe, effective and efficient care.

Author(s):  
Ada Aita ◽  
Laura Sciacovelli ◽  
Mario Plebani

AbstractA large body of evidence collected in recent years demonstrates the vulnerability of the extra-analytical phases of the total testing process (TTP) and the need to promote quality and harmonization in each and every step of the testing cycle. Quality indicators (QIs), which play a key role in documenting and improving quality in TTP, are essential requirements for clinical laboratory accreditation. In the last few years, wide consensus has been achieved on the need to adopt universal QIs and common terminology and to harmonize the management procedure concerning their use by adopting a common metric and reporting system. This, in turn, has led to the definition of performance specifications for extra-analytical phases based on the state of the art as indicated by data collected on QIs, particularly by clinical laboratories attending the Model of Quality Indicators program launched by the Working Group “Laboratory Errors and Patient Safety” of the International Federation of Clinical Chemistry and Laboratory Medicine. Harmonization plays a fundamental role defining not only the list of QIs to use but also performance specifications based on the state of the art, thus providing a valuable interlaboratory benchmark and tools for continuous improvement programs.


Author(s):  
Rainer Haeckel ◽  
Werner Wosniok ◽  
Thomas Streichert

AbstractThe organizers of the first EFLM Strategic Conference “Defining analytical performance goals” identified three models for defining analytical performance goals in laboratory medicine. Whereas the highest level of model 1 (outcome studies) is difficult to implement, the other levels are more or less based on subjective opinions of experts, with models 2 (based on biological variation) and 3 (defined by the state-of-the-art) being more objective. A working group of the German Society of Clinical Chemistry and Laboratory Medicine (DGKL) proposes a combination of models 2 and 3 to overcome some disadvantages inherent to both models. In the new model, the permissible imprecision is not defined as a constant proportion of biological variation but by a non-linear relationship between permissible analytical and biological variation. Furthermore, the permissible imprecision is referred to the target quantity value. The biological variation is derived from the reference interval, if appropriate, after logarithmic transformation of the reference limits.


2018 ◽  
Vol 57 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Min Duan ◽  
Xudong Ma ◽  
Jing Fan ◽  
Yanhong Guo ◽  
Wei Wang ◽  
...  

Abstract Background As effective quality management tools, quality indicators (QIs) are widely used in laboratory medicine. This study aimed to analyze the results of QIs, identify errors and provide quality specifications (QSs) based on the state-of-the-art. Methods Clinical laboratories all over China participated in the QIs survey organized by the National Health Commission of People’ Republic of China from 2015 to 2017. Most of these QIs were selected from a common model of QIs (MQI) established by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). All participants were asked to submit general information and original QIs data through a medical quality control data collection system. The results of QIs were reported in percentages and sigma, except turnaround time (TAT) which was measured in minutes. The 25th, 50th and 75th percentiles were, respectively, calculated as three levels of QSs, which were defined starting from the model proposed during the 1st Strategic Conference of the EFLM on “Defining analytical performance 15 years after the Stockholm Conference on Quality Specification in Laboratory Medicine”. Results A total of 76 clinical laboratories from 25 provinces in China continuously participated in this survey and submitted complete data for all QIs from 2015 to 2017. In general, the performance of all reported QIs have improved or at least kept stable over time. Defect percentages of blood culture contamination were the largest in the pre-analytical phase. Intra-laboratory TAT was always larger than pre-examination TAT. Percentage of tests covered by inter-laboratory comparison was relatively low than others in the intra-analytical phase. The performances of critical values notification and timely critical values notification were the best with 6.0σ. The median sigma level of incorrect laboratory reports varied from 5.5σ to 5.7σ. Conclusions QSs of QIs provide useful guidance for laboratories to improve testing quality. Laboratories should take continuous quality improvement measures in all phases of total testing process to ensure safe and effective tests.


Diagnosis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wilson Shcolnik ◽  
Fernando Berlitz ◽  
Cesar Alex de O. Galoro ◽  
Vinicius Biasoli ◽  
Rafael Lopes ◽  
...  

AbstractObjectivesIn the laboratory medicine segment, benchmarking is the process in which institutions seek to compare with the macro environment (performance comparison and best practices with different laboratories) and improve their results based on quality indicators. The literature has highlighted the vulnerability of the pre-analytical phase in terms of risks and failures and the use of interlaboratory comparison as an opportunity to define a strategic performance benchmark aligned with the laboratory medicine sector, which has been a promising strategy to ensure continuous improvement, identifying within the pre-analytical process the critical activities to guarantee patient safety. In this context, this paper aims to present the three-year experience (2016–2018) of the Benchmarking Program and Laboratory Indicators – in Portuguese, Programa de Benchmarking e Indicadores Laboratoriais (PBIL) – with emphasis on pre-analytical indicators and their comparison against literature references and other programs of benchmarking in the area of laboratory medicine. PBIL is organized by the Brazilian Society of Clinical Pathology/Laboratory Medicine (SBPC/ML) in conjunction with Controllab and coordinated by a Brazilian group with representatives from different countries.MethodsThe data presented in this paper involving the performance results of 180 laboratories with active participation. Results are presented in percentage (%, boxplot graphical in quartiles) and Sigma metric, recognized as the metric that best indicates the magnitude of failures in a process. The Pareto Chart was used to facilitate ordering and to identify the main errors in the pre-analytical phase. The Radar Chart was made available in this work for the purpose of comparing the results obtained in Sigma by the PBIL and IFCC Working Group Laboratory Errors and Patient Safety (WG LEPS).ResultsIn the study period, just over 80% of the pre-analytical failures are related to Blood culture contamination (hospital-based and non-hospital-based laboratories), Recollect and Non-registered exams, with failure rates of 2.70, 1.05 and 0.63%, respectively. The performance of the PBIL program participants was in line with the literature references, and allowed to identify benchmarks in the laboratory medicine market, target of PBIL, with best practices were observed for some indicators.ConclusionsThe results of the program demonstrate the importance of an ongoing program comparative performance-monitoring program for setting more robust goals and consequently reducing laboratory process failures. Even with these promising premises and results, the contextualized analysis of the program indicators, point to a still significant number of failures in our market, with possibilities for improvement in order aiming to ensure more robust and effective processes.


Author(s):  
Laura Sciacovelli ◽  
Giuseppe Lippi ◽  
Zorica Sumarac ◽  
Jamie West ◽  
Isabel Garcia del Pino Castro ◽  
...  

AbstractThe knowledge of error rates is essential in all clinical laboratories as it enables them to accurately identify their risk level, and compare it with those of other laboratories in order to evaluate their performance in relation to the State-of-the-Art (i.e. benchmarking) and define priorities for improvement actions. Although no activity is risk free, it is widely accepted that the risk of error is minimized by the use of Quality Indicators (QIs) managed as a part of laboratory improvement strategy and proven to be suitable monitoring and improvement tools. The purpose of QIs is to keep the error risk at a level that minimizes the likelihood of patients. However, identifying a suitable State-of-the-Art is challenging, because it calls for the knowledge of error rates measured in a variety of laboratories throughout world that differ in their organization and management, context, and the population they serve. Moreover, it also depends on the choice of the events to keep under control and the individual procedure for measurement. Although many laboratory professionals believe that the systemic use of QIs in Laboratory Medicine may be effective in decreasing errors occurring throughout the total testing process (TTP), to improve patient safety as well as to satisfy the requirements of International Standard ISO 15189, they find it difficult to maintain standardized and systematic data collection, and to promote continued high level of interest, commitment and dedication in the entire staff. Although many laboratories worldwide express a willingness to participate to the Model of QIs (MQI) project of IFCC Working Group “Laboratory Errors and Patient Safety”, few systematically enter/record their own results and/or use a number of QIs designed to cover all phases of the TTP. Many laboratories justify their inadequate participation in data collection of QIs by claiming that the number of QIs included in the MQI is excessive. However, an analysis of results suggests that QIs need to be split into further measurements. As the International Standard on Laboratory Accreditation and approved guidelines do not specify the appropriate number of QIs to be used in the laboratory, and the MQI project does not compel laboratories to use all the QIs proposed, it appears appropriate to include in the MQI all the indicators of apparent utility in monitoring critical activities. The individual laboratory should also be able to decide how many and which QIs can be adopted. In conclusion, the MQI project is proving to be an important tool that, besides providing the TTP error rate and spreading the importance of the use of QIs in enhancing patient safety, highlights critical aspects compromising the widespread and appropriate use of QIs.


2021 ◽  
Vol 9 (2) ◽  
pp. 64-70
Author(s):  
Arumalla VK ◽  
Chelliah S ◽  
Madhubala V

Background: Pre-analytical errors account for up to 70% of all the errors made in laboratory diagnostics which are mostly not directly under laboratory control. Laboratories across the world have been using different Quality indicators (QIs) for identifying and quantification of pre-analytical errors. Objective of the present study is to identify the different pre-analytical errors with their frequency and to assess the pre-analytical phase performance of emergency laboratory by using harmonized Quality Indicators and six sigma metrics. Methods and material: A prospective observational study was conducted from January 2019 to December 2019 to monitor the inappropriateness of samples and test request forms. We have quantified the performance of pre-analytical phase of our emergency laboratory based on the harmonized QIs proposed by The International Federation of Clinical Chemistry Working Group on Laboratory Errors and Patient Safety (IFCC- WGLEPS) and six sigma metrics. Results: Emergency laboratory received a total of 55431 samples during Jan- 2019 to Dec- 2019. Number of pre-analytical errors were 1089 which accounted for 1.96% of total samples received. Haemolysed samples, clotted samples and samples with insufficient volume were contributed to 37%, 26% and 15% of the total pre-analytical errors respectively. Conclusions: Pre-analytical phase performance of our emergency laboratory complies with the quality specifications laid by the International Federation of Clinical Chemistry Working Group on Laboratory Errors and Patient Safety (IFCC-WGLEPS). Implementation of harmonised QIs assures the comparability of laboratory findings with different laboratories across the world.


Author(s):  
Laura Sciacovelli ◽  
Mauro Panteghini ◽  
Giuseppe Lippi ◽  
Zorica Sumarac ◽  
Janne Cadamuro ◽  
...  

AbstractThe improving quality of laboratory testing requires a deep understanding of the many vulnerable steps involved in the total examination process (TEP), along with the identification of a hierarchy of risks and challenges that need to be addressed. From this perspective, the Working Group “Laboratory Errors and Patient Safety” (WG-LEPS) of International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) is focusing its activity on implementation of an efficient tool for obtaining meaningful information on the risk of errors developing throughout the TEP, and for establishing reliable information about error frequencies and their distribution. More recently, the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) has created the Task and Finish Group “Performance specifications for the extra-analytical phases” (TFG-PSEP) for defining performance specifications for extra-analytical phases. Both the IFCC and EFLM groups are working to provide laboratories with a system to evaluate their performances and recognize the critical aspects where improvement actions are needed. A Consensus Conference was organized in Padova, Italy, in 2016 in order to bring together all the experts and interested parties to achieve a consensus for effective harmonization of quality indicators (QIs). A general agreement was achieved and the main outcomes have been the release of a new version of model of quality indicators (MQI), the approval of a criterion for establishing performance specifications and the definition of the type of information that should be provided within the report to the clinical laboratories participating to the QIs project.


2012 ◽  
Vol 31 (3) ◽  
pp. 174-183 ◽  
Author(s):  
Nada Majkić-Singh ◽  
Zorica Šumarac

Quality Indicators of the Pre-Analytical PhaseQuality indicatorsare tools that allow the quantification of quality in each of the segments of health care in comparison with selected criteria. They can be defined as an objective measure used to assess the critical health care segments such as, for instance, patient safety, effectiveness, impartiality, timeliness, efficiency, etc. In laboratory medicine it is possible to develop quality indicators or the measure of feasibility for any stage of the total testing process. The total process or cycle of investigation has traditionally been separated into three phases, the pre-analytical, analytical and post-analytical phase. Some authors also include a »pre-pre« and a »post-post« analytical phase, in a manner that allows to separate them from the activities of sample collection and transportation (pre-analytical phase) and reporting (post-analytical phase). In the year 2008 the IFCC formed within its Education and Management Division (EMD) a task force calledLaboratory Errors and Patient Safety (WG-LEPS)with the aim of promoting the investigation of errors in laboratory data, collecting data and developing a strategy to improve patient safety. This task force came up with the Model of Quality Indicators (MQI) for the total testing process (TTP) including the pre-, intra- and post-analytical phases of work. The pre-analytical phase includes a set of procedures that are difficult to define because they take place at different locations and at different times. Errors that occur at this stage often become obvious later in the analytical and post-analytical phases. For these reasons the identification of quality indicators is necessary in order to avoid potential errors in all the steps of the pre-analytical phase.


Author(s):  
Mario Plebani ◽  
Laura Sciacovelli ◽  
Ada Aita ◽  
Michela Pelloso ◽  
Maria Laura Chiozza

AbstractThe definition, implementation and monitoring of valuable analytical quality specifications have played a fundamental role in improving the quality of laboratory services and reducing the rates of analytical errors. However, a body of evidence has been accumulated on the relevance of the extra-analytical phases, namely the pre-analytical steps, their vulnerability and impact on the overall quality of the laboratory information. The identification and establishment of valueable quality indicators (QIs) represents a promising strategy for collecting data on quality in the total testing process (TTP) and, particularly, for detecting any mistakes made in the individual steps of the pre-analytical phase, thus providing useful information for quality improvement projects. The consensus achieved on the developed list of harmonized QIs is a premise for the further step: the identification of achievable and realistic performance targets based on the knowledge of the state-of-the-art. Data collected by several clinical laboratories worldwide allow the classification of performances for available QIs into three levels: optimum, desirable and minimum, in agreement with the widely accepted proposal for analytical quality specifications.


2019 ◽  
Vol 497 ◽  
pp. 35-40 ◽  
Author(s):  
Laura Sciacovelli ◽  
Giuseppe Lippi ◽  
Zorica Sumarac ◽  
Isabel Garcia del Pino Castro ◽  
Agnes Ivanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document