scholarly journals Metrological traceability and harmonization of medical tests: a quantum leap forward is needed to keep pace with globalization and stringent IVD-regulations in the 21st century!

2018 ◽  
Vol 56 (10) ◽  
pp. 1598-1602 ◽  
Author(s):  
Christa Cobbaert ◽  
Nico Smit ◽  
Philippe Gillery

Abstract In our efforts to advance the profession and practice of clinical laboratory medicine, strong coordination and collaboration are needed more than ever before. At the dawn of the 21st century, medical laboratories are facing many unmet clinical needs, a technological revolution promising a plethora of better biomarkers, financial constraints, a growing scarcity of well-trained laboratory technicians and a sharply increasing number of International Organization for Standardization guidelines and new regulations to which medical laboratories should comply in order to guarantee safety and effectiveness of medical test results. Although this is a global trend, medical laboratories across continents and countries are in distinct phases and experience various situations. A universal underlying requirement for safe and global use of medical test results is the standardization and harmonization of test results. Since two decades and after a number of endeavors on standardization/harmonization of medical tests, it is time to reflect on the effectiveness of the approaches used. To keep laboratory medicine sustainable, viable and affordable, clarification of the promises of metrological traceability of test results for improving sick and health care, realization of formal commitment among all stakeholders of the metrological traceability chain and preparation of a joint and global plan for action are essential prerequisites. Policy makers and regulators should not only overwhelm the diagnostic sector with oversight and regulations but should also create the conditions by establishing a global professional forum for anchoring the metrological traceability concept in the medical test domain. Even so, professional societies should have a strong voice in their (inter-) national governments to negotiate long-lasting public policy commitment and funds for global standardization of medical tests.

2019 ◽  
Vol 57 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Marc Thelen ◽  
Florent Vanstapel ◽  
Pika Meško Brguljan ◽  
Bernard Gouget ◽  
Guilaine Boursier ◽  
...  

Abstract ISO15189:2012 requires medical laboratories to document metrological traceability of their results. While the ISO17511:2003 standard on metrological traceability in laboratory medicine requires the use of the highest available level in the traceability chain, it recognizes that for many measurands there is no reference above the manufacturer’s selected measurement procedure and the manufacturer’s working calibrator. Some immunoassays, although they intend to measure the same quantity and may even refer to the same reference material, unfortunately produce different results because of differences in analytical selectivity as manufacturers select different epitopes and antibodies for the same analyte. In other cases, the cause is the use of reference materials, which are not commutable. The uncertainty associated with the result is another important aspect in metrological traceability implementation. As the measurement uncertainty on the clinical samples is influenced by the uncertainty of all steps higher in the traceability chain, laboratories should be provided with adequate and appropriate information on the uncertainty of the value assignment to the commercial calibrators that they use. Although the between-lot variation in value assignment will manifest itself as part of the long-term imprecision as estimated by the end-user, information on worst-case to be expected lot-lot variation has to be communicated to the end-user by the IVD provider. When laboratories use ancillary equipment that potentially could have a critical contribution to the reported results, such equipment needs verification of its proper calibration and criticality to the result uncertainty could be assessed by an approach based on risk analysis, which is a key element of ISO15189:2012 anyway. This paper discusses how the requirement for metrological traceability as stated in ISO15189 should be met by the medical laboratory and how this should be assessed by accreditation bodies.


2004 ◽  
Vol 94 (2) ◽  
pp. 194-197
Author(s):  
Noubar Kessimian

The clinical laboratory is a vital component of modern podiatric medical practice. In order to interpret laboratory data correctly, the practitioner must understand the essentials of diagnostic testing. These essentials include precision, accuracy, sensitivity, specificity, and prevalence-based values of a given test. In addition, the podiatric physician should be aware of the limitations, variations, and interferences that can spuriously alter test results. (J Am Podiatr Med Assoc 94(2): 194-197, 2004)


2017 ◽  
Vol 55 (8) ◽  
pp. 1100-1108 ◽  
Author(s):  
Graham H. Beastall ◽  
Nannette Brouwer ◽  
Silvia Quiroga ◽  
Gary L. Myers

AbstractLaboratory medicine results influence a high percentage of all clinical decisions. Globalization requires that laboratory medicine results should be transferable between methods in the interests of patient safety. International collaboration is necessary to deliver this requirement. That collaboration should be based on traceability in laboratory medicine and the adoption of higher order international commutable reference materials and measurement procedures. Application of the metrological traceability chain facilitates a universal approach. The measurement of serum cholesterol and blood HbA1cserve as examples of the process of method standardization where an impact on clinical outcomes is demonstrable. The measurement of plasma parathyroid hormone and blood HbA2 serve as examples where the current between-method variability is compromising patient management and method standardization and/or harmonization is required. Challenges to the widespread adoption of traceability in laboratory medicine include the availability of reference materials and methods, geographical differences, the use of variable units, complex analytes and limited global coordination. The global collaboration requires the involvement of several different stakeholder groups ranging from international experts to laboratory medicine specialists in routine clinical laboratories. A coordinated action plan is presented with actions attributable to each of these stakeholder groups.


Author(s):  
Janne Cadamuro

Laboratory medicine has evolved from a mainly manual profession, providing few selected test results to a highly automated and standardized medical discipline, generating millions of test results per year. As next inevitable evolutional step, artificial intelligence (AI) algorithms will need to assist us in structuring and making sense of the masses of diagnostic data collected today. Such systems will be able to connect clinical and diagnostic data and to provide valuable suggestions in diagnosis, prognosis or therapeutic options. They will merge the often so separated worlds of the laboratory and the clinics. When used correctly, it will be a tool, capable of freeing the physicians time so that he/she can refocus on the patient. In this narrative review I therefore aim to provide an overview of what AI is, what applications currently are available in healthcare and in laboratory medicine in particular. I will discuss the challenges and pitfalls of applying AI algorithms and I will elaborate on the question if healthcare workers will be replaced by such systems in the near future.


Author(s):  
Mario Plebani

AbstractA body of evidence collected in the last few decades demonstrates that the pre- and post-analytical phases of the testing cycle are more error-prone than the analytical phase. However, the paradigm of errors and quality in laboratory medicine has been questioned, analytical mistakes continuing to be a major cause of adverse clinical outcomes and patient harm. Although the brain-to-brain concept is widely recognized in the community of laboratory professionals, there is lack of clarity concerning the inter-relationship between the different phases of the cycle, interdependence between the pre-analytical phase and analytical quality, and the effect of the post-analytical steps on the quality of ultimate laboratory information. Analytical quality remains the “core business” of clinical laboratories, but laboratory professionals and clinicians alike should never lose sight of the fact that pre-analytical variables are often responsible for erroneous test results and that quality biospecimens are pre-requisites for a reliable analytical phase. In addition, the pressure for expert advice on test selection and interpretation of results has increased hand in hand with the ever-increasing complexity of tests and diagnostic fields. Finally, the data on diagnostic errors and inappropriate clinical decisions made due to delay or misinterpretation of laboratory data underscore the current need for greater collaboration at the clinical-laboratory interface.


Author(s):  
Linda M. Thienpont ◽  
Katleen Van Uytfanghe ◽  
Diego Rodríguez Cabaleiro

AbstractThis manuscript explains the establishment andvalidation of metrological traceability of calibration for routine measurement procedures using common medical decision-making criteria. Metrological traceability is considered the basis for achieving comparability of measurement results in laboratory medicine. This concept is supported by European legislation, which demands that manufacturers provide assurance andd emonstrate metrological traceability of in vitro Diagnostic Medical Devices. The guidance to comply with these legislative requirements is available in different CEN/ISO standards and is used as a basis of this manuscript. The goals andaccomplishments in metrological traceability of SI- and non-SI analytes is considered. Specific problems, such as non-availability of primary reference materials and measurement procedures, lack of official endorsement, andnon-commutability of certain reference materials are discussed. With respect to non-commutability, the use of split-sample measurements is advocated. Also, the expression of measurement uncertainty associatedwith the application of the metrological traceability chain is discussed. In addition, the needfor post-market vigilance assessment of traceable performance is considered. Finally, laboratory medicine scientific and professional societies, diagnostics manufacturers, and clinicians are urged to share responsibilities for understanding the implications of metrological traceability of routine measurements.


2020 ◽  
Vol 58 (9) ◽  
pp. 1407-1413 ◽  
Author(s):  
Federica Braga ◽  
Mauro Panteghini

AbstractThe definition and enforcement of reference measurement systems, based on the implementation of metrological traceability of patient results to higher-order (reference) methods and/or materials, together with a clinically acceptable level of measurement uncertainty (MU), are fundamental requirements to produce accurate and equivalent laboratory results. The MU associated with each step of the traceability chain should be governed to obtain a final combined MU on clinical samples fulfilling the requested performance specifications. MU is useful for a number of reasons: (a) for giving objective information about the quality of individual laboratory performance; (b) for serving as a management tool for the medical laboratory and in vitro diagnostics (IVD) manufacturers, forcing them to investigate and eventually fix the identified problems; (c) for helping those manufacturers that produce superior products and measuring systems to demonstrate the superiority of those products; (d) for identifying analytes that need analytical improvement for their clinical use and ask IVD manufacturers to work for improving the quality of assay performance and (e) for abandoning assays with demonstrated insufficient quality. Accordingly, the MU should not be considered a parameter to be calculated by medical laboratories just to fulfill accreditation standards, but it must become a key quality indicator to describe both the performance of an IVD measuring system and the laboratory itself.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1399
Author(s):  
Janne Cadamuro

Laboratory medicine has evolved from a mainly manual profession, providing few selected test results to a highly automated and standardized medical discipline, generating millions of test results per year. As the next inevitable evolutional step, artificial intelligence (AI) algorithms will need to assist us in structuring and making sense of the masses of diagnostic data collected today. Such systems will be able to connect clinical and diagnostic data and to provide valuable suggestions in diagnosis, prognosis or therapeutic options. They will merge the often so separated worlds of the laboratory and the clinics. When used correctly, it will be a tool, capable of freeing the physicians time so that he/she can refocus on the patient. In this narrative review I therefore aim to provide an overview of what AI is, what applications currently are available in healthcare and in laboratory medicine in particular. I will discuss the challenges and pitfalls of applying AI algorithms and I will elaborate on the question if healthcare workers will be replaced by such systems in the near future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253396
Author(s):  
Akihisa Hata ◽  
Noboru Fujitani ◽  
Masahiro Takeshita ◽  
Chie Tanaka ◽  
Noriko Matsuda ◽  
...  

Livestock and companion animal health have a direct impact on human health. Research on clinical laboratory technology for veterinary medicine is as important as that on human laboratory technology. Reagents and analysis equipment for human medical laboratory tests are often used in veterinary medicine. Medical laboratories in Japan utilize the Japan Society of Clinical Chemistry (JSCC) method for blood alkaline phosphatase (ALP) analysis. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) method is used worldwide for ALP catalytic concentration measurement. When the IFCC method is used, human blood ALP activity is approximately one-third of the JSCC method’s activity. The JSCC method for ALP measurement was switched to the IFCC method in medical laboratories in Japan in April 2020 for global standardization purpose. It is uncertain whether conventional JSCC method reagents will continue to be supplied. In veterinary medicine, the relationship between the JSCC and IFCC methods in terms of ALP measurement is almost unclear. This study investigated the regression between JSCC and IFCC methods measuring ALP in bovine, canine, feline, and human. The regression formulas for bovine, canine, feline, and human ALP values using the conventional JSCC (x) and IFCC (y) methods are y = 0.379x + 0.124, y = 0.289x + 8.291, y = 0.358x + 0.432, and y = 0.337x + 2.959, respectively. These results suggested that the IFCC method measurement could be estimated by approximately one-third of the JSCC method measurement in animal species such as bovine, canine, and feline. By applying the conversion factors proposed in this study, a very good correlation could be obtained between the two methods for each animal.


2017 ◽  
Vol 36 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Mario Plebani ◽  
Laura Sciacovelli

SummaryAccreditation is a valuable resource for clinical laboratories and the development of an International Standard for their accreditation represented a milestone on the path towards improved quality and safety in laboratory medicine. The recent revision of the International Standard, ISO 15189, has further strengthened its value not only for improving the quality system of a clinical laboratory but also for better answering the request for competence, focus on customers’ needs and ultimate value of laboratory services. Although in some countries more general standards such as ISO 9001 for quality systems or ISO 17025 for testing laboratories are still used, there is increasing recognition of the value of ISO 15189 as the most appropriate and useful standard for the accreditation of medical laboratories. In fact, only this International Standard recognizes the importance of all steps of the total testing process, namely extra-analytical phases, the need to focus on technical competence in addition to quality systems, and the focus on customers’ needs. However, the number of accredited laboratories largely varies between European countries and also major differences affect the approaches to accreditation promoted by the national bodies. In particular, some national accreditation bodies perpetuate the use of fixed scopes, while the European co-operation for accreditation (EA) and the European Federation of Laboratory Medicine (EFLM) Working Group promote the use of flexible scopes. Major issues in clinical laboratory accreditation are the verification of examination procedures for imprecision, trueness and diagnostic accuracy and for estimating measurement uncertainty. In addition, quality indicators (QIs) are a fundamental requirement of the ISO 15189 International Standard.


Sign in / Sign up

Export Citation Format

Share Document