scholarly journals Synthesis of Hepatic Glycosaminoglycans in the Early Stages of Galactosamine Hepatitis: A Rapid Decline of Heparan Sulfate is Followed by Elevation of Chondroitin Sulfate and Dermatan Sulfate

Author(s):  
A. M. Gressner ◽  
W. Köster-Eiserfunke
Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 257-266 ◽  
Author(s):  
RT Parmley ◽  
RE Hurst ◽  
M Takagi ◽  
SS Spicer ◽  
RL Austin

Chondroitin sulfate is known to be present in normal and leukemic myeloid cells; however, its definitive subcellular location and association with other glycosaminoglycans (GAGs) has not been demonstrated. We have studied the type and distribution of GAGs in neutrophil granule subpopulations of normal and leukemic myeloid cells using ultrastructural, cytochemical, immunologic, and biochemical methods. At the ultrastructural level, high-iron diamine- thiocarbohydrazide-silver proteinate (HID-TCH-SP) stained sulfated glycoconjugates selectively in immature primary granules of normal promyelocytes and Auer rods and immature granules of leukemic myeloblasts. Staining was weak or absent in mature primary granules, whereas tertiary granules stained moderately. Primary granule staining with HID-TCH-SP was greatly diminished by prior treatment of the specimens with chondroitinase ABC and/or nitrous acid, indicating the presence of chondroitin sulfate and N-sulfated glycosaminoglycan. Immunostaining of myeloid cells with a rabbit antichondroitin 4-sulfate and ferritin-conjugated goat anti-rabbit IgG sequence resulted in staining of most primary granules. Biochemical analysis of GAGs from leukemic myeloblasts containing primary granules and Auer rods, but lacking secondary and tertiary granules, revealed 8 x 10(-17) mole of uronic acid/cell and electrophoretic and sulfaminohexose analysis showed 60%-70% chondroitin sulfate AC of heterogeneous molecular weight, 20%-30% of a GAG that most closely resembled heparan sulfate, and 10% dermatan sulfate. The lack of significant HID-TCH-SP staining of sulfate iin sites other than Auer rods and primary granules in leukemic myeloblasts indicates that these granules contain the chondroitin, dermatan, and heparan sulfate isolated from the same specimen. Similar GAGs are present in primary granules of normal cells as evidenced by their cytochemical and immunostaining properties. Thus, these studies demonstrate a heterogeneous population of GAGs not previously identified and localize these substances to the primary granule of leukemic and normal cells.


1993 ◽  
Vol 123 (5) ◽  
pp. 1279-1287 ◽  
Author(s):  
R Bar-Shavit ◽  
Y Eskohjido ◽  
J W Fenton ◽  
J D Esko ◽  
I Vlodavsky

We have previously demonstrated that chemically modified thrombin preparations induce endothelial cell (EC) adhesion, spreading and cytoskeletal reorganization via an Arg-Gly-Asp (RGD) sequence and the alpha v beta 3 integrin. Native thrombin, however, did not exhibit adhesive properties, consistent with crystal structure analysis, showing that Gly-Asp residues of the RGD epitope are buried within the molecule. We have now identified a possible physiological mean of converting thrombin to an adhesive protein. Plasmin, the major end product of the fibrinolytic system, converted thrombin to an adhesive protein for EC in a time and dose-dependent manner. EC adhesion and spreading was also induced by a low molecular weight (approximately 3,000 D) cleavage fragment generated upon incubation of thrombin with plasmin. Cell adhesion mediated by this fragment was completely inhibited by the synthetic peptide GRGDSP. Conversion of thrombin to an adhesive molecule was significantly enhanced in the presence of heparin or heparan sulfate, while other glycosaminoglycans (GAGs) (e.g., dermatan sulfate, keratan sulfate, chondroitin sulfate) had no effect. The role of cell surface heparan sulfate in thrombin conversion to EC adhesive protein was investigated using CHO cell mutants defective in various aspects of GAG synthesis. Incubation of both thrombin and a suboptimal amount of plasmin on the surface of formaldehyde fixed wild-type CHO-KI cells resulted in an efficient conversion of thrombin to an adhesive molecule, as indicated by subsequent induction of EC attachment. In contrast, there was no effect to incubation of thrombin and plasmin with fixed CHO mutant cells lacking both heparan sulfate and chondroitin sulfate, or with cells expressing no heparan sulfate and a three-fold increase in chondroitin sulfate. A similar gain of adhesive properties was obtained upon incubation of thrombin and plasmin in contact with native, but not heparinase-treated extracellular matrix (ECM) produced by cultured ECs. It appears that cell surface and ECM-associated heparan sulfate modulate thrombin adhesive properties through its heparin binding site in a manner that enables suboptimal amounts of plasmin to expose the RGD domain. Our results demonstrate, for the first time, a significant modulation of thrombin molecule by heparin, resulting in its conversion to a potent adhesive protein for ECs. This conversion is most effective in contact with cell surfaces, basement membranes and ECM.


2016 ◽  
Vol 473 (22) ◽  
pp. 4145-4158 ◽  
Author(s):  
Kyohei Higashi ◽  
Keita Takeda ◽  
Ann Mukuno ◽  
Yusuke Okamoto ◽  
Sayaka Masuko ◽  
...  

Glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate, heparin, heparan sulfate and keratan sulfate (KS) are linear sulfated repeating disaccharide sequences containing hexosamine and uronic acid [or galactose (Gal) in the case of KS]. Among the GAGs, CS shows structural variations, such as sulfation patterns and fucosylation, which are responsible for their physiological functions through CS interaction with CS-binding proteins. Here, we solved the structure of KS-branched CS-E derived from a clam, Mactra chinensis. KS disaccharide [d-GlcNAc6S-(1→3)-β-d-Gal-(1→] was attached to the C-3 position of GlcA, and consecutive KS-branched disaccharide sequences were found in a CS chain. KS-branched polysaccharides clearly exhibited resistance to degradation by chondroitinase ABC or ACII (at low concentrations) compared with typical CS structures. Furthermore, KS-branched polysaccharides stimulated neurite outgrowth of hippocampal neurons. These results strongly suggest that M. chinensis is a rich source of KS-branched CS, and it has important biological activities.


Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 257-266 ◽  
Author(s):  
RT Parmley ◽  
RE Hurst ◽  
M Takagi ◽  
SS Spicer ◽  
RL Austin

Abstract Chondroitin sulfate is known to be present in normal and leukemic myeloid cells; however, its definitive subcellular location and association with other glycosaminoglycans (GAGs) has not been demonstrated. We have studied the type and distribution of GAGs in neutrophil granule subpopulations of normal and leukemic myeloid cells using ultrastructural, cytochemical, immunologic, and biochemical methods. At the ultrastructural level, high-iron diamine- thiocarbohydrazide-silver proteinate (HID-TCH-SP) stained sulfated glycoconjugates selectively in immature primary granules of normal promyelocytes and Auer rods and immature granules of leukemic myeloblasts. Staining was weak or absent in mature primary granules, whereas tertiary granules stained moderately. Primary granule staining with HID-TCH-SP was greatly diminished by prior treatment of the specimens with chondroitinase ABC and/or nitrous acid, indicating the presence of chondroitin sulfate and N-sulfated glycosaminoglycan. Immunostaining of myeloid cells with a rabbit antichondroitin 4-sulfate and ferritin-conjugated goat anti-rabbit IgG sequence resulted in staining of most primary granules. Biochemical analysis of GAGs from leukemic myeloblasts containing primary granules and Auer rods, but lacking secondary and tertiary granules, revealed 8 x 10(-17) mole of uronic acid/cell and electrophoretic and sulfaminohexose analysis showed 60%-70% chondroitin sulfate AC of heterogeneous molecular weight, 20%-30% of a GAG that most closely resembled heparan sulfate, and 10% dermatan sulfate. The lack of significant HID-TCH-SP staining of sulfate iin sites other than Auer rods and primary granules in leukemic myeloblasts indicates that these granules contain the chondroitin, dermatan, and heparan sulfate isolated from the same specimen. Similar GAGs are present in primary granules of normal cells as evidenced by their cytochemical and immunostaining properties. Thus, these studies demonstrate a heterogeneous population of GAGs not previously identified and localize these substances to the primary granule of leukemic and normal cells.


1975 ◽  
Vol 53 (6) ◽  
pp. 713-720 ◽  
Author(s):  
D. N. Barry ◽  
J. M. Bowness

The turnover of sulfate label in crude glycosaminoglycan fractions from rat kidney cortex, medulla, and papilla has been determined. Heparan sulfate, chondroitin sulfate, dermatan sulfate, and hyaluronate have been separated electrophoretically and their specific activities determined after injection of labeled sulfate or glucose. The half-lives of the sulfated glycosaminoglycans are within the ranges found for other organs and tissues, but hyaluronate has a somewhat faster turnover in the kidney than elsewhere.


1991 ◽  
Vol 261 (2) ◽  
pp. L148-L155 ◽  
Author(s):  
J. B. Karlinsky ◽  
P. J. Bucay ◽  
D. E. Ciccolella ◽  
M. P. Crowley

Incorporation of [3H]glucosamine and 35S into glycosaminoglycan (GAG) was measured in hamster lung explant cultures at 0, 1, 4, and 24 h after a single endotracheal instillation of Escherichia coli endotoxin. Lung content of GAG was measured in a second group of treated animals over an 8-day period. Albumin was detected after endotoxin treatment in bronchoalveolar lavage fluid at 24 h but was not found in lavage fluid 7 days later or in lavage fluid of saline-treated animals. Over the initial 24 h, increasing amounts of radiolabeled precursor molecules were incorporated into all classes of GAG. Proportionally more radiolabel was incorporated into hyaluronic acid and chondroitin sulfate, and less was incorporated into heparan sulfate. The proportion of radiolabel incorporated into dermatan sulfate did not change. Total lung content of hyaluronate and chondroitin sulfate was elevated at 24 h but was returning to baseline by 8 days. The lung content of dermatan sulfate was increased at 8 days; lung content of heparan sulfate did not change over the 8-day study period. Elevations in the amount of explant heparan sulfate that bound to antithrombin III (AT III) were found at 1 h after both saline and endotoxin treatment. Radiosulfated heparan sulfates were found in blood from hamsters treated with endotoxin 1 h previously; these heparan sulfates did not bind to AT III. However, blood contained heparin-like activity. We conclude that endotoxin differentially alters the metabolism of each class of hamster lung glycosaminoglycans and that metabolic changes begin very rapidly after endotoxin exposure. The relation of pulmonary endothelial injury to the presence of heparin-like activity in blood is not yet clear.


1991 ◽  
Vol 39 (10) ◽  
pp. 1321-1330 ◽  
Author(s):  
A D Snow ◽  
R Bramson ◽  
H Mar ◽  
T N Wight ◽  
R Kisilevsky

Previous histochemical studies have suggested a close temporal relationship between the deposition of highly sulfated glycosaminoglycans (GAGs) and amyloid during experimental AA amyloidosis. In the present investigation, we extended these initial observations by using specific immunocytochemical probes to analyze the temporal and ultrastructural relationship between heparan sulfate proteoglycan (HSPG) accumulation and amyloid deposition in a mouse model of AA amyloidosis. Antibodies against the basement membrane-derived HSPG (either protein core or GAG chains) demonstrated a virtually concurrent deposition of HSPGs and amyloid in specific tissue sites regardless of the organ involved (spleen or liver) or the induction protocol used (amyloid enhancing factor + silver nitrate, or daily azocasein injections). Polyclonal antibodies to AA amyloid protein and amyloid P component also demonstrated co-localization to sites of HSPG deposition in amyloid sites, whereas no positive immunostaining was observed in these locales with a polyclonal antibody to the protein core of a dermatan sulfate proteoglycan (known as "decorin"). Immunogold labeling of HSPGs (either protein core or GAG chains) in amyloidotic mouse spleen or liver revealed specific localization of HSPGs to amyloid fibrils. In the liver, heparan sulfate GAGs were also immunolocalized to the lysosomal compartment of hepatocytes and/or Kupffer cells adjacent to sites of amyloid deposition, suggesting that these cells are involved in HSPG production and/or degradation. The close temporal and ultrastructural relationship between HSPGs and AA amyloid further implies an important role for HSPGs during the initial stages of AA amyloidosis.


Sign in / Sign up

Export Citation Format

Share Document