Development, validation and evaluation of a homogenous one-step reverse transcriptase-initiated PCR assay with competitive internal control for the detection of hepatitis C virus RNA

Author(s):  
Jens Mueller ◽  
Matthias Gessner ◽  
Anja Remberg ◽  
Jochen Hoch ◽  
Gerold Zerlauth ◽  
...  

AbstractNucleic acid amplification testing for hepatitis C virus (HCV) RNA has become an essential tool for the prevention and clinical management of hepatitis C. We describe the development, validation and evaluation of a homogenous reverse transcriptase-initiated HCV-PCR assay with competitive internal control that is applicable to both the quantitative detection of HCV genomes in single patient samples and the screening of blood donations by mini-pool testing. For the implementation of a positive run control, a HCV RNA-positive plasma sample was calibrated against an international HCV RNA standard preparation. For quantification purposes, an in vitro-transcribed RNA calibrator sequence was used. The detection limit of the assay (95% positive cut-off) was determined by probit analysis and was calculated as 114IU/mL. Comparable sensitivity to different HCV template sequences was verified for HCV genotypes 1–5. Quantitative test results correlated well with viral loads that had been previously determined by the Bayer VERSANT HCV RNA 3.0 bDNA assay (n=53, R=0.943, p<0.001). During more than 5years of blood donation testing, the specificity of the assay was found to be 99.51%. All assay components showed constant performance during this time period. In conclusion, we introduce a well-proven method that allows fast and reliable quantification of HCV genomes.

1998 ◽  
Vol 36 (4) ◽  
pp. 862-865 ◽  
Author(s):  
J. Albadalejo ◽  
R. Alonso ◽  
R. Antinozzi ◽  
M. Bogard ◽  
A.-M. Bourgault ◽  
...  

The benefits shown by the recent introduction of PCR for the in vitro diagnosis of hepatitis C virus (HCV) infection has prompted the development of standardized, ready-to-use assays that can be implemented in routine clinical laboratories. We have evaluated the clinical performance of COBAS AMPLICOR HCV (COBAS), the first instrument system that allows the automation of HCV RNA amplification and detection, to determine its performance in the routine laboratory setting. More than 2,000 specimens collected at five centers were analyzed in parallel by the COBAS and the manual AMPLICOR HCV (AMPLICOR) tests, and the results were compared with the results for biochemical and serological markers of HCV. In this study the two PCR systems showed the same accuracy, with a concordance rate of 99.8%. As expected, the correlation between serology and PCR was not absolute because the presence of anti-HCV antibodies may be associated with a latent or past infection. On the other hand, if the presence of confirmed anti-HCV antibodies and elevated alanine aminotransferase levels are taken as the “gold standard,” indicating an active, ongoing infection, the COBAS and AMPLICOR tests show high and comparable sensitivities (100%) and specificities (98%), with positive and negative predictive values of 100 and 97%, respectively. During the study no false-positive reactions were detected. The use of an internal control allowed the identification of inhibitory substances that prevented amplification for 0.3 and 0.4% of samples tested by the COBAS and AMPLICOR tests, respectively. Compared to the manual system, the COBAS system allowed a significant reduction of hands-on time and could improve the overall laboratory work flow. In conclusion, these results support the use of the COBAS and AMPLICOR tests for the molecular diagnosis of active HCV infections.


2012 ◽  
Vol 57 (1) ◽  
pp. 436-444 ◽  
Author(s):  
Naoki Ogura ◽  
Yukiyo Toyonaga ◽  
Izuru Ando ◽  
Kunihiro Hirahara ◽  
Tsutomu Shibata ◽  
...  

ABSTRACTJTK-853, a palm site-binding NS5B nonnucleoside polymerase inhibitor, shows antiviral activityin vitroand in hepatitis C virus (HCV)-infected patients. Here, we report the results of genotypic and phenotypic analyses of resistant variants in 24 HCV genotype 1-infected patients who received JTK-853 (800, 1,200, or 1,600 mg twice daily or 1,200 mg three times daily) in a 3-day monotherapy. Viral resistance in NS5B was investigated using HCV RNA isolated from serum specimens from the patients. At the end of treatment (EOT) with JTK-853, the amino acid substitutions M414T (methionine [M] in position 414 at baseline was replaced with threonine [T] at EOT), C445R (cysteine [C] in position 445 at baseline was replaced with arginine [R] at EOT), Y448C/H (tyrosine [Y] in position 448 at baseline was replaced with cysteine [C] or histidine [H] at EOT), and L466F (leucine [L] in position 466 at baseline was replaced with phenylalanine [F] at EOT), which are known to be typical resistant variants of nonnucleoside polymerase inhibitors, were observed in a clonal sequencing analysis. These substitutions were also selected by a treatment with JTK-853in vitro, and the 50% effective concentration of JTK-853 in the M414T-, C445F-, Y448H-, and L466V-harboring replicons attenuated the susceptibility by 44-, 5-, 6-, and 21-fold, respectively, compared with that in the wild-type replicon (Con1). These findings suggest that amino acid substitutions of M414T, C445R, Y448C/H, and L466F are thought to be viral resistance mutations in HCV-infected patients receiving JTK-853 in a 3-day monotherapy.


The Lancet ◽  
2000 ◽  
Vol 355 (9197) ◽  
pp. 41-42 ◽  
Author(s):  
Christian G Schüttler ◽  
Gregor Caspari ◽  
Christian A Jursch ◽  
Wulf R Willems ◽  
Wolfram H Gerlich ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2771 ◽  
Author(s):  
Yoo Cho ◽  
Hwan Lee ◽  
Hyojeung Kang ◽  
Hyosun Cho

HCV genotype 2a strain JFH-1 replicates and produces viral particles efficiently in human hepatocellular carcinoma (huh) 7.5 cells, which provide a stable in vitro cell infection system for the hepatitis C virus (HCVcc system). Natural killer (NK) cells are large lymphoid cells that recognize and kill virus-infected cells. In this study, we investigated the interaction between NK cells and the HCVcc system. IL-10 is a typical immune regulatory cytokine that is produced mostly by NK cells and macrophages. IL-21 is one of the main cytokines that stimulate the activation of NK cells. First, we used anti-IL-10 to neutralize IL-10 in a coculture of NK cells and HCVcc. Anti-IL-10 treatment increased the maturation of NK cells by enhancing the frequency of the CD56+dim population in NK-92 cells. However, with anti-IL-10 treatment of NK cells in coculture with J6/JFH-1-huh 7.5 cells, there was a significant decrease in the expression of STAT1 and STAT5 proteins in NK-92 cells and an increase in the HCV Core and NS3 proteins. In addition, rIL-21 treatment increased the frequency of the CD56+dim population in NK-92 cells, Also, there was a dramatic increase in the expression of STAT1 and STAT5 proteins in rIL-21 pre-stimulated NK cells and a decrease in the expression of HCV Core protein in coculture with J6/JFH-1-huh 7.5 cells. In summary, we found that the functional activation of NK cells can be modulated by anti-IL-10 or rIL-21, which controls the expression of HCV proteins as well as HCV RNA replication.


2008 ◽  
Vol 52 (6) ◽  
pp. 2097-2110 ◽  
Author(s):  
Pantxika Bellecave ◽  
Christian Cazenave ◽  
Julie Rumi ◽  
Cathy Staedel ◽  
Ophélie Cosnefroy ◽  
...  

ABSTRACT We describe here the further characterization of two DNA aptamers that specifically bind to hepatitis C virus (HCV) RNA polymerase (NS5B) and inhibit its polymerase activity in vitro. Although they were obtained from the same selection procedure and contain an 11-nucleotide consensus sequence, our results indicate that aptamers 27v and 127v use different mechanisms to inhibit HCV polymerase. While aptamer 27v was able to compete with the RNA template for binding to the enzyme and blocked both the initiation and the elongation of RNA synthesis, aptamer 127v competed poorly and exclusively inhibited initiation and postinitiation events. These results illustrate the power of the selective evolution of ligands by exponential enrichment in vitro selection procedure approach to select specific short DNA aptamers able to inhibit HCV NS5B by different mechanisms. We also determined that, in addition to an in vitro inhibitory effect on RNA synthesis, aptamer 27v was able to interfere with the multiplication of HCV JFH1 in Huh7 cells. The efficient cellular entry of these short DNAs and the inhibitory effect observed on human cells infected with HCV indicate that aptamers are useful tools for the study of HCV RNA synthesis, and their use should become a very attractive and alternative approach to therapy for HCV infection.


2009 ◽  
Vol 90 (12) ◽  
pp. 2929-2939 ◽  
Author(s):  
Pong Kian Chua ◽  
Matthew F. McCown ◽  
Sonal Rajyaguru ◽  
Simran Kular ◽  
Ram Varma ◽  
...  

ISG15 has recently been reported to possess antiviral properties against viruses, both in vivo and in vitro. Knock-down of ISG15 gene expression by small interfering RNA followed by alpha interferon (IFN-α) treatment in Huh-7 cells resulted in an increased phenotypic sensitivity to IFN-α, as determined by measuring hepatitis C virus (HCV) RNA replication inhibition in stably transfected HCV replicon cells and in cells infected with genotype 1a HCVcc (infectious HCV). This IFN-α-specific effect, which was not observed with IFN-γ, correlated with an increase in expression of the IFN-α-inducible genes IFI6, IFITM3, OAS1 and MX1, whereas the expression of the non-IFN-α-inducible genes PTBP-1 and JAK1 remained unchanged. It has previously been reported that, unlike ISG15 knock-down, increased sensitivity to IFN-α after knock-down of USP18 occurs through the prolonged phosphorylation of STAT-1. Combination knock-down of ISG15 and USP18 resulted in a moderate increase in IFN-α-inducible gene expression compared with single ISG15 or USP18 knock-down. Furthermore, the phenotype of increased gene expression after ISG15 knock-down and IFN-α treatment was also observed in non-hepatic cell lines A549 and HeLa. Taken together, these results reveal a novel function for ISG15 in the regulation of the IFN-α pathway and its antiviral effect.


Sign in / Sign up

Export Citation Format

Share Document