Antimicrobial Activity in the Gasphase with Hypochloric Acid

2021 ◽  
Vol 7 (2) ◽  
pp. 511-514
Author(s):  
Dirk Boecker ◽  
Roland Breves ◽  
Zhentian Zhang ◽  
Clemens Bulitta

Abstract Background:The study investigated if the disinfecting potential of Hypochlorous acid (HOCl) in suspensions are transferrable to in-air cleaning applications and to what extent aerosolized HOCl solutions can deactivate indoor microbial contaminations in-air at or below legal limits. Material and Method: For the liquid disinfection we used a standard suspension disinfection test protocol. For the in-air tests we conducted several experiments where aerosolized bacterial suspensions were injected into lab chambers preloaded with different HOCl gas concentrations. Results:In suspension experiments we found sufficient efficacies for all studied organisms at minimum concentrations of 200 ppm HOCl. The in-air measurement set-up allows to follow microbe deactivation by HOCl interaction. The deactivation rate increases with the HOCl concentration, and the values are highest for Gram-negative bacteria. Conclusion:We confirmed our hypothesis of the high disinfecting power of HOCl in-air at safe levels for populated indoor places. The investigated bacteria provide a model system for infectious particles, including enveloped viruses (to which Coronavirus belongs). These early results suggest that HOCl should be further evaluated as an air-cleaning method which may complement established concepts.

2021 ◽  
Author(s):  
Yan Chen ◽  
Nurgul Kaplan Lease ◽  
Jennifer Gin ◽  
Tad Ogorzalek ◽  
Paul D. Adams ◽  
...  

Manual proteomic sample preparation methods limit sample throughput and often lead to poor data quality when thousands of samples must be analyzed. Automated workflows are increasingly used to overcome these issues for some (or even all) of the sample preparation steps. Here, we detail three optimised step-by-step protocols to: (A) lyse Gram-negative bacteria and fungal cells; (B) quantify the amount of protein extracted; and (C) normalize the amount of protein and set up tryptic digestion. These protocols have been developed to facilitate rapid, low variance sample preparation of hundreds of samples, be easily implemented on widely-available Beckman-Coulter Biomek automated liquid handlers, and allow flexibility for future protocol development. By using this workflow 50 micrograms of peptides for 96 samples can be prepared for tryptic digestion in under an hour. We validate these protocols by analyzing 47 E. coli and R. toruloides samples and show that this modular workflow provides robust, reproducible proteomic samples for high-throughput applications. The expected results from these protocols are 94 peptide samples from Gram-negative bacterial and fungal cells prepared for bottom-up quantitative proteomic analysis without the need for desalting column cleanup and with peptide variance (CVs) below 15%.


2020 ◽  
Vol 8 (8) ◽  
pp. 1220 ◽  
Author(s):  
Waleska Stephanie da Cruz Nizer ◽  
Vasily Inkovskiy ◽  
Joerg Overhage

Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization.


2021 ◽  
Vol 9 (9) ◽  
pp. 1868
Author(s):  
Paz Aranega-Bou ◽  
Nicholas Ellaby ◽  
Matthew J. Ellington ◽  
Ginny Moore

Sink waste traps and drains are a reservoir for multi-drug resistant Gram-negative bacteria in the hospital environment. It has been suggested that these bacteria can migrate through hospital plumbing. Hospital waste traps were installed in a laboratory model system where sinks were connected through a common wastewater pipe. Enterobacterales populations were monitored using selective culture, MALDI-TOF identification and antibiotic resistance profiling before and after a wastewater backflow event. When transfer between sinks was suspected, isolates were compared using whole-genome sequencing. Immediately after the wastewater backflow, two KPC-producing Enterobacter cloacae were recovered from a waste trap in which Carbapenemase-producing Enterobacterales (CPE) had not been detected previously. The isolates belonged to ST501 and ST31 and were genetically indistinguishable to those colonising sinks elsewhere in the system. Following inter-sink transfer, KPC-producing E. cloacae ST501 successfully integrated into the microbiome of the recipient sink and was detected in the waste trap water at least five months after the backflow event. Seven weeks and three months after the backflow, other inter-sink transfers involving Escherichia coli ST5295 and KPC-producing E. cloacae ST501 were also observed.


Author(s):  
Paz Aranega-Bou ◽  
Nicholas Ellaby ◽  
Matthew J. Ellington ◽  
Ginny Moore

Sink waste traps and drains are a reservoir for multi-drug resistant Gram-negative bacteria in the hospital environment. It has been suggested that these bacteria can migrate through hospital plumbing. Hospital waste traps were installed in a laboratory model system where sinks were connected through a common wastewater pipe. Enterobacterales populations were monitored using selective culture, MALDI-TOF identification and antibiotic resistance profiling before and after a wastewater backflow event. When transfer between sinks was suspected, isolates were compared using whole-genome sequencing. Immediately after the wastewater backflow, two KPC-producing Enterobacter cloacae were recovered from a waste trap in which Carbapenemase-producing Enterobacterales (CPE) had not been detected previously. The isolates belonged to ST501 and ST31 and were genetically indistinguishable to those colonising sinks elsewhere in the system. Following inter-sink transfer, KPC-producing E. cloacae ST501 successfully integrated into the microbiome of the recipient sink and was detected in the waste trap water at least six months after the backflow event. Seven weeks and three months after the backflow, other inter-sink transfers involving Escherichia coli ST5295 and KPC-producing E. cloacae ST501 were also observed.


2022 ◽  
Author(s):  
Yan Chen ◽  
Nurgul Kaplan Lease ◽  
Jennifer Gin ◽  
Tad Ogorzalek ◽  
Paul D. Adams ◽  
...  

Manual proteomic sample preparation methods limit sample throughput and often lead to poor data quality when thousands of samples must be analyzed. Automated workflows are increasingly used to overcome these issues for some (or even all) of the sample preparation steps. Here, we detail three optimised step-by-step protocols to: (A) lyse Gram-negative bacteria and fungal cells; (B) quantify the amount of protein extracted; and (C) normalize the amount of protein and set up tryptic digestion. These protocols have been developed to facilitate rapid, low variance sample preparation of hundreds of samples, be easily implemented on widely-available Beckman-Coulter Biomek automated liquid handlers, and allow flexibility for future protocol development. By using this workflow 50 micrograms of peptides for 96 samples can be prepared for tryptic digestion in under an hour. We validate these protocols by analyzing 47 E. coli and R. toruloides samples and show that this modular workflow provides robust, reproducible proteomic samples for high-throughput applications. The expected results from these protocols are 94 peptide samples from Gram-negative bacterial and fungal cells prepared for bottom-up quantitative proteomic analysis without the need for desalting column cleanup and with peptide variance (CVs) below 15%.


Author(s):  
Roger C. Wagner

Bacteria exhibit the ability to adhere to the apical surfaces of intestinal mucosal cells. These attachments either precede invasion of the intestinal wall by the bacteria with accompanying inflammation and degeneration of the mucosa or represent permanent anchoring sites where the bacteria never totally penetrate the mucosal cells.Endemic gram negative bacteria were found attached to the surface of mucosal cells lining the walls of crypts in the rat colon. The bacteria did not intrude deeper than 0.5 urn into the mucosal cells and no degenerative alterations were detectable in the mucosal lining.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Xie Nianming ◽  
Ding Shaoqing ◽  
Wang Luping ◽  
Yuan Zenglin ◽  
Zhan Guolai ◽  
...  

Perhaps the data about periplasmic enzymes are obtained through biochemical methods but lack of morphological description. We have proved the existence of periplasmic bodies by electron microscope and described their ultrastructures. We hope this report may draw the attention of biochemists and mrophologists to collaborate on researches in periplasmic enzymes or periplasmic bodies with each other.One or more independent bodies may be seen in the periplasmic space between outer and inner membranes of Gram-negative bacteria, which we called periplasmic bodies. The periplasmic bodies have been found in seven species of bacteria at least, including the Pseudomonas aeroginosa. Shigella flexneri, Echerichia coli. Yersinia pestis, Campylobacter jejuni, Proteus mirabilis, Clostridium tetani. Vibrio cholerae and Brucella canis.


Sign in / Sign up

Export Citation Format

Share Document