Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship

2015 ◽  
Vol 69 (3) ◽  
Author(s):  
Quan Liu ◽  
Ting-Ting Chen ◽  
Hui Cao

AbstractProtein glycation leads to the formation of advanced glycation end-products (AGEs), which contribute to the pathogenesis of diabetic complications. The structure-activity relationship of dietary flavonoids for inhibiting the glycation of bovine serum albumin (BSA) in vitro was subjected to a detailed investigation. The structure-activity relationship revealed that: 1) the hydroxylation on ring B of the flavones enhanced the inhibition and the hydroxyl groups at the C-5 and C-7 positions of flavones favoured the inhibition; 2) the optimal number of hydroxyl groups on ring B of the flavonols was one (at the C-3 position) and the methylation of flavonols weakened the inhibition; 3) the methoxylation at the C-6 position and methylation at C-4' position of genistein clearly enhanced the inhibition; 4) the hydroxyl groups at the C-5 and C-7 positions of flavanones were in favour of the inhibition; 5) the glycosylation of flavonoids significantly weakened the inhibition. Obvious linear affinity-activity relationships exist between the BSA-flavonoid interaction and flavonoids as BSA glycation inhibitors (R

2015 ◽  
Vol 20 (4) ◽  
Author(s):  
Sabina Galiniak ◽  
Grzegorz Bartosz ◽  
Izabela Sadowska-Bartosz

AbstractThe role of metal (especially) iron ions has been postulated to play a prominent role in protein glycation, suggesting antiglycating effectiveness of metal chelators. However, this rule may not apply to all model glycation systems. We found that metal chelators are not effective in prevention of glycation of bovine serum albumin (BSA) in vitro, and there is no correlation between the antiglycating effects of 32 compounds and their iron chelation activity as measured with the ferrozine test. These data indicate that the glycation of BSA in vitro is iron-independent and is not a proper system to study the role of metals in protein glycation.


Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


Sign in / Sign up

Export Citation Format

Share Document