Corrosion protection performance of nano-TiO2-containing phosphate coatings obtained by anodic electrochemical treatment

2019 ◽  
Vol 37 (6) ◽  
pp. 565-578 ◽  
Author(s):  
Vaibhav S. Kathavate ◽  
Nilesh S. Bagal ◽  
Pravin P. Deshpande

AbstractThe efficacy of nano-TiO2-containing zinc phosphate coatings on low-carbon steel is investigated. Zinc phosphate coatings are electrodeposited on low-carbon steel (AISI 1015) keeping current density, deposition time and wt % nano-TiO2 at their respective levels. Corrosion protection performance of these coatings was assessed using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl electrolyte. The morphology, the composition and the growth process of the zinc phosphate coating is investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD) and electrochemical measurements. The XRD study reveals that the obtained phosphate layer contains traces of hopeite and phosphophylite. The formed zinc phosphate coating offers high corrosion protection in 3.5% NaCl solution, which is well supported by EIS studies. The presence of nano-TiO2 in the phosphate bath anticipated to offer a better surface coverage and reduction in porosity and forms more homogeneous coating, which is in agreement with the SEM studies. The optimization of the electrodeposition phosphating process for achieving better responses in terms of corrosion rate and coating resistance is addressed in this paper.

2018 ◽  
Vol 4 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

AbstractThe present study aims at deposition of zinc phosphate coatings on low carbon steel with incorporated nano- TiO2 particles by chemical phosphating method. The coated low carbon steel samples were assessed in corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarization techniques (Tafel) in 3.5% NaCl solution. Morphology and chemical composition of the coatings were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy in order to observe growth of coating. Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano- TiO2 in the phosphating bath. Corrosion rate of nano-TiO2 chemical phosphate coated samples was found to be 3.5 milli inches per year which was 3 times less than the normal phosphate-coated sample (8 mpy). Electrochemical impedance spectroscopy studies reveal reduction of porosity of nano-TiO2 phosphate coated samples. It was found that nano-TiO2 particles in the phosphating solution yielded uniform phosphate coatings of higher coating weight, fewer defects and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

The present study aims at deposition of zinc phosphate coatings with the incorporation of nano Titanium dioxide particles by chemical phosphating method. Zinc phosphate coatings were developed on low carbon steel by using nano TiO2 in the standard phosphating bath. The Coated low carbon steel samples were assessed for corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarisation techniques in 3.5% NaCl solution. Chemical composition of the coatings was analysed by energy dispersive X-ray spectroscopy (EDX). Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano TiO2 in the phosphating bath. Corrosion rate of nano TiO2 incorporated chemical phosphate coated samples was found to be 3.5 mpy which was 4 times less than the bare uncoated low carbon steel (~14 mpy). Electrochemical impedance spectroscopy studies revels in the reduction of porosity in nano TiO2 phosphate coated samples. It was found that nano TiO2 particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

The present study aims at deposition of zinc phosphate coatings with the incorporation of nano Titanium dioxide particles by chemical phosphating method. Zinc phosphate coatings were developed on low carbon steel by using nano TiO2 in the standard phosphating bath. The Coated low carbon steel samples were assessed for corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarisation techniques in 3.5% NaCl solution. Chemical composition of the coatings was analysed by energy dispersive X-ray spectroscopy (EDX). Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano TiO2 in the phosphating bath. Corrosion rate of nano TiO2 incorporated chemical phosphate coated samples was found to be 3.5 mpy which was 4 times less than the bare uncoated low carbon steel (~14 mpy). Electrochemical impedance spectroscopy studies revels in the reduction of porosity in nano TiO2 phosphate coated samples. It was found that nano TiO2 particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


2016 ◽  
Vol 71 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Pravin P. Deshpande ◽  
Abhijit A. Bhopale ◽  
Vandana A. Mooss ◽  
Anjali A. Athawale

2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Pravin Deshpande ◽  
Sanket Vathare ◽  
Shashikant Vagge ◽  
Elena Tomšík ◽  
Jaroslav Stejskal

AbstractThe coaxial coating of multi-wall carbon nanotubes (MWCNT) with poly(aniline) (PANI) was synthesised and a paint was prepared containing conducting PANI-MWCNT composite. The corrosion protection performance was assessed by open circuit potential measurements, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The corrosion rate of low-carbon steel coated with 1.5 mass % of PANI-MWCNT-based paint in 3.5 mass % sodium chloride solution was found to be 0.037 mm y−1, about 5.2 times lower than that of unpainted low-carbon steel and 3.6 times lower than that of epoxy painted steel.


2021 ◽  
Vol 2 (4) ◽  
pp. 666-677
Author(s):  
Chaymae Hejjaj ◽  
Ahmed Ait Aghzzaf ◽  
Nico Scharnagl ◽  
Mohammed Makha ◽  
Mouad Dahbi ◽  
...  

A new corrosion inhibitor called ATP-6-AHA was elaborated, and its inhibition action on S235 low carbon steel in 3.5% sodium chloride (NaCl) was investigated using gravimetry, potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS). The release of ecofriendly 6-aminohexanoic acid (6-AHA) from its established aluminum tri-polyphosphate intercalate (ATP-6-AHA) is investigated using electrochemical and surface characterization techniques such as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results revealed that ATP-6-AHA is a good inhibitor, with an inhibition efficiency of approximately 70%. The efficiency is related to the passivation of a steel surface by a phosphate protective layer due to the synergistic effect of 6-AHA, as confirmed by a steel surface analysis conducted using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). This study suggests that the intercalation of 6-AHA as a sustainable organic molecule within the interlayer spaces of aluminum tri-polyphosphate can well serve as a good flaky inhibitor for protecting S235 low-carbon steel from corrosion in 3.5% NaCl.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


2009 ◽  
Vol 79-82 ◽  
pp. 1017-1020 ◽  
Author(s):  
Hui Shu Zhang ◽  
Dong Ping Zhan ◽  
Song Lian Bai ◽  
Zhou Hua Jiang

The corrosion behaviors of Al-Si-Cr-Cu bearing low carbon steel and a reference steel Q235 were tested in a cyclic dry/wet environment containing 0.01mol/L NaHSO3 in laboratory. Rust layers were observed by optical microscope (OM), scanning electron microscopy (SEM) and XRD. The electrochemical behaviors of the steels were studied on the polarization curves and electrochemical impedance spectroscopy (EIS). The results indicate that after 120h corrosion test, the annual corrosion rates of the designed steels reduce 42 % than Q235 at least. The corrosion products are generally iron oxyhydroxides and oxides such as FeOOH, γ-FeOOH, α-FeOOH, γ-Fe2O3, Fe3O4. The α-FeOOH possesses good stabilization mainly exits and can improve the corrosion resistance. There are the enrichments of Cu, Cr, Si and Al in the rust layer close to the matrix, which make the rust layer be more compact and protected. The corrosion currents of the two designed steels are lower than that of Q235, the corrosion potentials are higher than that of Q235 after Tafel fitting. The rust layer impedances of the designed steels are higher than that of Q235.


Sign in / Sign up

Export Citation Format

Share Document