Statistical Modelling and Optimisation of the Biosorption of Cd(II) and Pb(II) onto Dead Biomass of Pseudomonas Aeruginosa

Author(s):  
Joshua O. Ighalo ◽  
Adewale George Adeniyi

AbstractDead biomass of micro-organisms can be used as biosorbents for the mitigation of heavy metal pollution in the aqueous environment. The aim of this study was to statistically model and optimise the sorption of Cd(II) and Pb(II) by dead biomass of Pseudomonas aeruginosa and to study the interactions between operating conditions. Statistically significant models were obtained for Cd(II) and Pb(II) sorption. The standard deviation for the Cd(II) and Pb(II) models were 0.86 and 1.54 while the coefficient of determination (R2) were 0.9978 and 0.9928 respectively. For both models, the adjusted R2 was in good agreement with the predicted R2 as the difference was less than 0.2. Numerical optimisation revealed that optimum Cd(II) removal of 88.6 % can be achieved at 1.172 ppm initial metal concentration, pH of 8.85, temperature of 43.72 °C, agitation time of 125.96 minutes and dead cell mass of 114.8 mg. Also, an optimum Pb(II) removal of 100 % can be achieved at 1.936 ppm initial metal concentration, pH of 6.88, temperature of 37.24 °C, agitation time of 130.57 minutes and dead cell mass of 122.85 mg. The study has revealed that at careful selected operational parameters, dead biomass of Pseudomonas aeruginosa can be valorised for the removal of heavy metals in aqueous media.

Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 1185-1192 ◽  
Author(s):  
Mahnaz Karimpour ◽  
Seyed Davoud Ashrafi ◽  
Kamran Taghavi ◽  
Ali Mojtahedi ◽  
Esmaeil Roohbakhsh ◽  
...  

1996 ◽  
Vol 34 (5-6) ◽  
pp. 249-256 ◽  
Author(s):  
Hong-Ying Hu ◽  
Mamie Nozawa ◽  
Koichi Fujie ◽  
Tsuyoshi Makabe ◽  
Kohei Urano

The population dynamics of microbes in the biological wastewater treatment processes such as a submerged biofilter was investigated to obtain basic information to determine the optimal operating conditions. The effects of coexistence of biodegradable substances such as glucose and peptone on the acclimation of microbes in the biofilm to hard chemicals such as acrylonitrile (AN), which is poorly biodegradable and a volatile substance, was investigated on the basis of the respiratory quinone profile. Kinetic study of the removal of AN in the course of acclimation of microbes was investigated using a laboratory-scale submerged biofilter as well. It was ascertained that the acclimation of the microbes to AN was accelerated by coexistence of biodegradable substances, and the microbial phase after acclimation differed from those with the coexistence of glucose and peptone. The quinone profiles in the acclimation showed that Brevibacterium sp. and Pseudomonas aeruginosa, of which the predominant quinone of the respiratory chain is menaquinone-8(H2) and ubiquinone-9, respectively, multiplied selectively in the acclimation course without and with the coexistence of glucose and peptone, respectively. It was also made clear that there were few kinds and number of protozoa and metazoa in the biofilter treating the wastewater containing AN.


Author(s):  
Sunil K. Deokar ◽  
Nachiket A. Gokhale ◽  
Sachin A. Mandavgane

Abstract Biomass ashes like rice husk ash (RHA), bagasse fly ash (BFA), were used for aqueous phase removal of a pesticide, diuron. Response surface methodology (RSM) and artificial neural network (ANN) were successfully applied to estimate and optimize the conditions for the maximum diuron adsorption using biomass ashes. The effect of operational parameters such as initial concentration (10–30 mg/L); contact time (0.93–16.07 h) and adsorbent dosage (20–308 mg) on adsorption were studied using central composite design (CCD) matrix. Same design was also employed to gain a training set for ANN. The maximum diuron removal of 88.95 and 99.78% was obtained at initial concentration of 15 mg/L, time of 12 h, RHA dosage of 250 mg and at initial concentration of 14 mg/L, time of 13 h, BFA dosage of 60 mg respectively. Estimation of coefficient of determination (R 2) and mean errors obtained for ANN and RSM (R 2 RHA = 0.976, R 2 BFA = 0.943) proved ANN (R 2 RHA = 0.997, R 2 BFA = 0.982) fits better. By employing RSM coupled with ANN model, the qualitative and quantitative activity relationship of experimental data was visualized in three dimensional spaces. The current approach will be instrumental in providing quick preliminary estimations in process and product development.


Inorganics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Laurent Sévery ◽  
Sebastian Siol ◽  
S. Tilley

Anchored molecular catalysts provide a good step towards bridging the gap between homogeneous and heterogeneous catalysis. However, applications in an aqueous environment pose a serious challenge to anchoring groups in terms of stability. Ultrathin overlayers embedding these catalysts on the surface using atomic layer deposition (ALD) are an elegant solution to tackle the anchoring group instability. The propensity of ALD precursors to react with water leads to the question whether molecules containing aqua ligands, such as most water oxidation complexes, can be protected without side reactions and deactivation during the deposition process. We synthesized two iridium and two ruthenium-based water oxidation catalysts, which contained an aqua ligand (Ir–OH2 and Ru–OH2) or a chloride (Ir–Cl and Ru–Cl) that served as a protecting group for the former. Using a ligand exchange reaction on the anchored and partially embedded Ru–Cl, the optimal overlayer thickness was determined to be 1.6 nm. An electrochemical test of the protected catalysts on meso-ITO showed different behaviors for the Ru and the Ir catalysts. The former showed no onset difference between protected and non-protected versions, but limited stability. Ir–Cl displayed excellent stability, whilst the unprotected catalyst Ir–OH2 showed a later initial onset. Self-regeneration of the catalytic activity of Ir–OH2 under operating conditions was observed. We propose chloride ligands as generally applicable protecting groups for catalysts that are to be stabilized on surfaces using ALD.


2021 ◽  
Vol 23 ◽  
pp. 42-64
Author(s):  
Boris Basok ◽  
Ihor Bozhko ◽  
Maryna Novitska ◽  
Aleksandr Nedbailo ◽  
Myroslav Tkachenko

This article is devoted to the analysis of the heat engineering characteristics of the operation of an Earth-to-Air Heat Exchanger, EAHE, with a circular cross-sectional shape, which is a component of the geothermal ventilation system. The authors analyzed literature sources devoted to the research of heat exchangers of the soil-air type of various designs and for working conditions in various soils. Much attention is paid to the issues of modeling the operation of such heat exchangers and the distinctive features of each of these models. Also important are the results of experimental studies carried out on our own experimental bench and with the help of which the numerical model was validated. The results of these studies are the basis for the development of a method for determining the optimal diameter of an EAHE under operating conditions for soil in Kyiv, Ukraine.


Author(s):  
Neel J. Parikh ◽  
Peter Rogge ◽  
Kenneth Luebbert

Coal-fired units are increasingly expected to operate at varying loads while simultaneously dealing with various operational influences as well as fuel variations. Maintaining unit load availability while managing adverse effects of various operational issues such as, flue gas temperature excursions at the SCR inlet, high steam temperatures and the like presents significant challenges. Dynamic adjustment of sootblowing activities and different operational parameters is required to effectively control slagging, fouling and achieve reliability in unit operation. Closed-loop optimizers aim to reduce ongoing manual adjustments by control operators and provide consistency in unit operation. Such optimizers are typically computer software-based and work by interfacing an algorithmic and/or artificial intelligence based decision making system to plant control system [1]. KCP&L is in the process of implementing Siemens SPPA-P3000 combustion and sootblowing optimizers at several Units. The Sootblowing Optimizer solution determines the need for sootblowing based on dynamic plant operating conditions, equipment availability and plant operational drivers. The system then generates sootblower activation signals for propagation in a closed-loop manner to the existing sootblower control system at ‘optimal’ times. SPPA-P3000 Sootblowing Optimizer has been successfully installed at Hawthorn Unit 5, a 594-MW, wall-fired boiler, firing 100 percent Powder River Basin coal. This paper discusses implementation approach as well as operational experience with the Sootblowing Optimizer and presents longer-term operational trends showing unit load sustainability and heat rate improvement.


2012 ◽  
Vol 622-623 ◽  
pp. 489-493
Author(s):  
Iskander Beisembetov ◽  
Sabyi Ussupov ◽  
Bakhyt Absadykov ◽  
Beken Arymbekov ◽  
Birzhan Bektibay

Development relevance to improve the operational parameters of the support units of machine tools in their design elements is introduced that increase the rigidity of the components, their carrying capacity, damp occurring vibrations in the process, the coefficient of performance (COP), smoothness of motion, positioning accuracy, reducing the wear of their working surfaces and maintain the original accuracy. A number of engineering development [1], [2], aimed at improving the above characteristics of the machine by changing and improving design of reference nodes used in these rails rolling bearings, aerostatic and hydrostatic guides, as well as the use of automatic control systems of its basic parameters, determine its quality. However, in some operating conditions in which errors occur, mainly due to the instability of oil-film thickness (gap) between the mobile and immobile elements of the hydrostatic bearing. For high accuracy requirements it will negatively affect the quality of machined parts and equipment performance. On this basis, it becomes apparent urgency of the problem of automatic stabilization of oil-film thickness (gap) in the IR. To ensure high precision equipment to improve power system hydrostatic bearing units of machine tools. This, in turn, creates the prerequisite for the development of stabilization systems of the gap in the hydrostatic bearing, with the help of which the thickness of oil layer in them would be kept constant even with significant dynamic load on the support.


Author(s):  
Mo´nica Galdo-Vega ◽  
Carlos Santolaria-Morros ◽  
Jesu´s Manuel Ferna´ndez Oro ◽  
Katia Maria Argu¨elles-Di´az

The longitudinal ventilation system (LVS) efficiency in road tunnels is conditioned by geometric and operational parameters. Typical geometric parameters are the length of the tunnel, its slope and the transversal section. All these factors are generally fixed and thus not modifiable in the regular operation of the facility. On the other hand, operational parameters, like the working fans layout, the environmental conditions or the traffic density are case-sensitive and susceptible to influence the baseline performance of the ventilation system. In the present study, different pressure gradients, established between inlet and outlet location of the jet fan influence, are analyzed. This static resistance is shown to have a significant impact on the momentum transfer established between the jet expansion and the bulk flow inside the tunnel. For moderate pressure gradients, the jet discharged from fan is relativity well-mixed, allowing to reach uniform flow conditions in the streamwise direction. When the adverse pressure gradients become severe, the high-velocity flow is blocked, unable to mix out in the inter fan spacing and losing spanwise uniformity. At critical conditions, large recirculation areas can be developed within primary flow structures, generating turbulence and important energy losses, and even inducing reverse flow at the tunnel exit. The extreme operating conditions of a longitudinal ventilation system in a road tunnel have been studied using a 3D numerical simulation. Preliminary analysis for grid sensitivity and election of an accurate turbulence closure were performed to guarantee a valuable modeling. Following, systematic computations over a cluster of PC’s were executed using the well-tested Fluent code. RANS modeling with RSM scheme allowed a satisfactory description of three-dimensional vortical structure in the recirculation zones, especially for adverse pressure gradients. At this point, numerical results have provided a comprehensive overview of the mechanism associated to the momentum transfer of the jet expansion, comparing the performance for zero-pressure gradients with those observed for adverse conditions. Also, this paper gives valuable information about practical limits of the LVS, advancing operational conditions that compromise the ventilation efficiency.


2021 ◽  
Author(s):  
Qasem Dashti ◽  
Saad Matar ◽  
Hanan Abdulrazzaq ◽  
Nouf Al-Shammari ◽  
Francy Franco ◽  
...  

Abstract A network modeling campaign for 15 surface gathering centers involving more than 1800 completion strings has helped to lay out different risks on the existing surface pipeline network facility and improved the screening of different business and action plans for the South East Kuwait (SEK) asset of Kuwait Oil Company. Well and network hydraulic models were created and calibrated to support engineers from field development, planning, and operations teams in evaluating the hydraulics of the production system for the identification of flow assurance problems and system optimization opportunities. Steady-state hydraulic models allowed the analysis of the integrated wells and surface network under multiple operational scenarios, providing an important input to improve the planning and decision-making process. The focus of this study was not only in obtaining an accurate representation of the physical dimension of well and surface network elements, but also in creating a tool that includes standard analytical workflows able to evaluate wells and surface network behavior, thus useful to provide insightful predictive capability and answering the business needs on maintaining oil production and controlling unwanted fluids such as water and gas. For this reason, the model needs to be flexible enough in covering different network operating conditions. With the hydraulic models, the evaluation and diagnosis of the asset for operational problems at well and network level will be faster and more effective, providing reliable solutions in the short- and long-terms. The hydraulic models enable engineers to investigate multiple scenarios to identify constraints and improve the operations performance and the planning process in SEK, with a focus on optimal operational parameters to establish effective wells drawdown, evaluation of artificial lifting requirements, optimal well segregation on gathering centers headers, identification of flow assurance problems and supporting production forecasts to ensure effective production management.


2021 ◽  
Vol 16 (3) ◽  
pp. 673-685
Author(s):  
D. Hadj Bachir ◽  
Hocine Boutoumi ◽  
H. Khalaf ◽  
Pierre Eloy ◽  
J. Schnee ◽  
...  

TiO2 pillared clay was prepared by intercalation of titan polyoxocation into interlamelar space of an Algerian montmorillonite and used for the photocatalytic degradation of the linuron herbicide as a target pollutant in aqueous solution. The TiO2 pillared montmorillonite (Mont-TiO2) was characterized by X-ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), X-Ray fluorescence (XRF), scanning electronic microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), Fourier transformed infra-red (FT-IR), specific area and porosity determinations. This physicochemical characterization pointed to successful TiO2 pillaring of the clay. The prepared material has porous structure and exhibit a good thermal stability as indicated by its surface area after calcination by microwave. The effects of operating parameters such as catalyst loading, initial pH of the solution and the pollutant concentration on the photocatalytic efficiency and COD removal  were evaluated. Under initial pH of the solution around seven, pollutant concentration of 10 mg/L and 2.5 g/L of catalyst at room temperature, the degradation efficiency and COD removal of linuron was best then the other operating conditions. It was observed that operational parameters play a major role in the photocatalytic degradation process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document