scholarly journals Perovskite-structured Active Solid Catalyst for Biofuel Synthesis

2019 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Ahmed Umar ◽  
Musthafa Ottakam Thotyl ◽  
Abdullahi Hadi

Abstract A solid catalyst tailored to perovskite structure was synthesized and investigated for catalytic activity in a transesterification reaction to form biodiesel. The catalyst has demonstrated high catalytic activity and selectivity for biodiesel under very mild reaction conditions and short reaction times. The catalyst system has shown robust resistance to leaching of the active phase when reused. The performance was attributable to the perovskite structure and the dopant metal used. Hence, this work has shown that the structure and dopant metal of the solid catalyst could be tailored to enhance catalytic activity and durability for renewable fuel synthesis.

2013 ◽  
Vol 483 ◽  
pp. 38-41
Author(s):  
Shu Heng Liu

Take Waugh-Type (NH4)6[MnMo9O32] •8H2O absorbed on diatomite and prepared supported solid catalyst. The properties of the catalyst were studied through the synthesis of benzyl acetate. The appropriate reaction conditions were obtained by orthogonal test: mole ratio of acetic acid to benzyl alcohol was 2.5:1.0, the catalyst dosage was 1.6g, the water carrying agent toluene dosage was 2.5ml, reaction time was 150min, esterification yield was 87.4%. The catalyst are high catalytic activity and non- polluting, and could be reused.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1247
Author(s):  
Negisa Ebadipour ◽  
Sébastien Paul ◽  
Benjamin Katryniok ◽  
Franck Dumeignil

Calcium-based catalysts are of high interest for glycerol polymerization due to their high catalytic activity and large availability. However, their poor stability under reaction conditions is an issue. In the present study, we investigated the stability and catalytic activity of Ca-hydroxyapatites (HAps) as one of the most abundant Ca-source in nature. A stochiometric, Ca-deficient and Ca-rich HAps were synthesized and tested as catalysts in the glycerol polymerization reaction. Deficient and stochiometric HAps exhibited a remarkable 100% selectivity to triglycerol at 15% of glycerol conversion at 245 °C after 8 h of reaction in the presence of 0.5 mol.% of catalyst. Moreover, under the same reaction conditions, Ca-rich HAp showed a high selectivity (88%) to di- and triglycerol at a glycerol conversion of 27%. Most importantly, these catalysts were unexpectedly stable towards leaching under the reaction conditions based on the ICP-OES results. However, based on the catalytic tests and characterization analysis performed by XRD, XPS, IR, TGA-DSC and ICP-OES, we found that HAps can be deactivated by the presence of the reaction products themselves, i.e., water and polymers.


Author(s):  
Negisa Ebadipour ◽  
Sébastien Paul ◽  
Benjamin Katryniok ◽  
Franck Dumeignil

Abstract: Calcium-based catalysts are of a high interest for glycerol polymerization due to their high catalytic activity and large availability. However, their poor stability under reaction conditions is an issue. In the present study, we investigated the stability and catalytic activity of Ca-hydroxyapatites (HAps) as one of the most abundant Ca-source in nature. A stochiometric, a Ca-deficient and a Ca-rich HAps have been synthetized and tested as catalysts in the glycerol polymerization reaction. Deficient and stochiometric HAps exhibited a remarkable 100% selectivity to triglycerol at 15 % of glycerol conversion at 245 °C after 8 h of reaction in the presence 0.5 mol.% of catalyst. Moreover, under the same reaction conditions, Ca-rich HAp showed a high selectivity (88 %) to di- and triglycerol at a glycerol conversion of 27 %. Most importantly, these catalysts were unexpectedly stable towards leaching under the reaction conditions based on the ICP-OES results. However, based on the catalytic tests and characterization analysis performed by XRD, XPS, IR, TGA-DSC and ICP-OES, we found that HAps can be deactivated by the presence of the reaction products themselves, i.e., water and polymers.


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


2014 ◽  
Vol 53 (47) ◽  
pp. 12855-12859 ◽  
Author(s):  
Ping Jiang ◽  
Qian Liu ◽  
Yanhui Liang ◽  
Jingqi Tian ◽  
Abdullah M. Asiri ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (100) ◽  
pp. 57185-57191 ◽  
Author(s):  
Baowei Wang ◽  
Sihan Liu ◽  
Zongyuan Hu ◽  
Zhenhua Li ◽  
Xinbin Ma

Co3O4 nanoparticles showed high catalytic activity for low temperature CO methanation. CoO is the active phase of the catalyst. Pre-reduction treatment can improve catalytic stability.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eda Gokirmak Sogut ◽  
Hilal Acidereli ◽  
Esra Kuyuldar ◽  
Yasar Karatas ◽  
Mehmet Gulcan ◽  
...  

Abstract Several metal nanoparticle based catalysts have been synthesized for catalyzing the hydrogen production process by hydrolysis of methylamine-borane (MeAB). However, there was only one study that catalyzes the producing of hydrogenvia the methanolysis of MeAB, and it was carried out by our research group. For this reason, in this work, a new catalyst system entitled by single-walled carbon nanotube (SWCNT) supported bimetallic platinum-ruthenium nanoparticles were developed and called as PtRu@SWCNT. These NPs were characterized by several techniques (XRD, XPS, Raman, and TEM), and they were performed for the methanolysis of MeAB with high catalytic activity. The prepared PtRu@SWCNT NPs were also tested in the methanolysis of MeAB at different parameters including different temperatures, catalyst and substrate concentrations, and reusability performance. Experimental results revealed that the new PtRu@SWCNT NPs had excellent catalytic activity and reusability for removing of hydrogen from the methanolysis of MeAB at ambient conditions. According to the obtained data, the turnover frequency is 136.25 mole H2/mole PtRu × min, and the activation energy (Ea) is 17.29 kJ/mole. More than 99% of conversion was observed at room temperature.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 639 ◽  
Author(s):  
Yunlei Li ◽  
Yanjie Zhang ◽  
Panfeng Wu ◽  
Caiting Feng ◽  
Ganglin Xue

Polyoxometalates based ionic liquids (POM-ILs) exhibit a high catalytic activity in oxidative desulfurization. In this paper, four new POM-IL hybrids based on transition metal mono-substituted Keggin-type phosphomolybdates, [Bmim]5[PMo11M(H2O)O39] (Bmim = 1-butyl 3-methyl imidazolium; M = Co2+, Ni2+, Zn2+, and Mn2+), have been synthesized and used as catalysts for the oxidation/extractive desulfurization of model oil, in which ILs are used as the extraction solvent and H2O2 as an oxidant under very mild conditions. The factors that affected the desulfurization efficiency were studied and the optimal reaction conditions were obtained. The results showed that the [Bmim]5[PMo11Co(H2O)O39] catalyst demonstrated the best catalytic activity, with sulfur-removal of 99.8%, 85%, and 63% for dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and benzothiophene (BT), respectively, in the case of extraction combining with a oxidative desulfurization system under optimal reaction conditions (5 mL model oil (S content 500 ppm), n(catalyst) = 4 μmol, n(H2O2)/n(Substrate) = 5, T = 50 °C for 60 min with [Omim]BF4 (1 mL) as the extractant). The catalyst can be recycled at least 8 times, and still has stability and high catalytic activity for consecutive desulfurization. Probable reaction mechanisms have been proposed for catalytic oxidative/extractive desulfurization.


Synthesis ◽  
2017 ◽  
Vol 49 (18) ◽  
pp. 4372-4382 ◽  
Author(s):  
Mohammed Waheed ◽  
Naseem Ahmed

2-Hydroxyindan-1-ones have been efficiently synthesized and successfully applied as ligands in Pd-catalyzed Ullmann type, Suzuki–Miyaura, and Mizoroki–Heck cross-coupling reactions with aryl tosylates and aryl halides. The ligands are air- and moisture-stable and have shown high catalytic activity with Pd(OAc)2 in these cross-coupling reactions. The system tolerates a variety of functional groups in the product and can be re-used at least three times with maximum efficiency.


2013 ◽  
Vol 750-752 ◽  
pp. 1227-1230
Author(s):  
Shu Heng Liu ◽  
Li Xia Wang ◽  
Lin Lin Guo ◽  
Hua Yuan ◽  
Feng Zhen Yang

Take Waugh-Type (NH4)6[MnMo9O32]8H2O absorbed on anion exchange resin and prepared supported solid catalyst. The properties of the catalyst were studied through the synthesis of benzyl acetate. The appropriate reaction conditions were obtained by orthogonal test: mole ratio of acetic acid to benzyl alcohol was 2.5:1.0, the catalyst dosage was 0.4g, the water carrying agent toluene dosage was 2.5ml, reaction time was 150min, esterification yield was 95.4%. The catalyst are high catalytic activity and non-polluting, and could be reused.


Sign in / Sign up

Export Citation Format

Share Document