scholarly journals Reconstruction of Dynamics of SO2 Concentration in Troposphere Based on Results of Direct Measurements

2019 ◽  
Vol 26 (1) ◽  
pp. 59-68
Author(s):  
Jakub M. Gac ◽  
Monika Petelczyc

Abstract A method for the reconstruction of the dynamics of processes with discrete time, developed in our previous papers, has been applied for study the dynamics of concentration of sulfur dioxide in lower troposphere. For the analysis, recordings of sulfur dioxide concentration from four measurement stations located in Poland (two of them has been located in huge cities and two in rarely inhabited regions) were used. We managed to obtain the deterministic and stochastic component of this dynamics. In result, we estimate the lifetime of sulfur dioxide in troposphere and the increase of sulfur dioxide concentration influenced by anthropogenic sources.

2017 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Daven K. Henze ◽  
Hsien-Liang Tseng ◽  
Cenlin He

Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before April 18 and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (April 20–25) to global emissions from March 1 to April 25. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 %), and natural gas flaring emissions in the Western Extreme North of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in Northern China, contribute significantly (~ 10 %) to surface BC across the Arctic. On average it takes ~ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic, direct transport events dominate BC at Denali (87 %), a site outside the Arctic front, a strong transport barrier. The relative contribution of direct transport to surface BC within the Arctic front is much smaller (~ 50 % at Barrow and Zeppelin and ~ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of ‘chronic’ pollution (~ 40 % at Barrow and 65 % at Alert and 57 % at Zeppelin) on 1–2 month timescales. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Both finer temporal resolution of biomass burning emissions and accounting for the Wegener-Bergeron-Findeisen (WBF) process in wet scavenging improve the source attribution estimates.


2012 ◽  
Vol 534 ◽  
pp. 289-292
Author(s):  
Yan Jun Zhao ◽  
Dong Xing Wang ◽  
Yi Chen Lu ◽  
Rui Kun Gong

The non-dispersive infrared absorption spectrum method is one of the important sulfur dioxide concentration measurement method. If the soot particles attach on the protection windows surface, the original measurement light intensity is attenuated because of the absorption and scattering of the soot particle and the sulfur dioxide concentration measurement accuracy is decreased. The protection window pollution question caused by the monodispersion soot particles is discussed in the paper. The numerical simulation results show that the sulfur dioxide concentration measurement accuracy is related to the protection window pollution. The solution method is brought out and the measurement accuracy can be improved.


2016 ◽  
Vol 78 (6-4) ◽  
Author(s):  
Rattapong Tritippayanon ◽  
Veeraya Jiradilok ◽  
Pornpote Piumsomboon ◽  
Benjapon Chalermsinsuwan

The unsteady state computational fluid dynamics model for gas-solid particle flow in industrial scale circulating fluidized bed boiler combining with combustion and desulfurization (using limestone solid sorbent) chemical reactions, both homogeneous and heterogeneous, was developed in this study. The effects of solid sorbent feeding position and solid sorbent particle size on sulfur dioxide concentration were investigated. The results showed that both the solid sorbent feeding position and solid sorbent particle size had an effect on the sulfur dioxide capture. Entering solid sorbent at the upper secondary air position gave lower sulfur dioxide concentration than the one at the lower secondary air position and fuel feed position, respectively. This can be explained by the influence of suitable temperature at the upper secondary air position for desulfurization chemical reaction. About the solid sorbent particle size, the sulfur dioxide capture was the lowest when using the largest solid sorbent particle size due to the system hydrodynamics. 


2011 ◽  
Vol 55 (2) ◽  
pp. 297-304 ◽  
Author(s):  
L. Hao ◽  
Y. Wang ◽  
J. Xu ◽  
S.-D. Feng ◽  
C.-Y. Ma ◽  
...  

2002 ◽  
Author(s):  
Zhenjiang He ◽  
Guanling Yang ◽  
Jianwen Xiong ◽  
Zuohua Huang ◽  
Hongzhong Chen ◽  
...  

2018 ◽  
Author(s):  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Patrick Chazette ◽  
Joel Brito ◽  
Marco Gaetani ◽  
...  

Abstract. The complex vertical distribution of aerosols over coastal southern West Africa (SWA) is investigated using airborne observations and numerical simulations. Observations were gathered on 2 July 2016 offshore of Ghana and Togo, during the field phase of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa project. The aerosol loading in the lower troposphere includes emissions from coastal cities (Accra, Lomé, Cotonou and Lagos) as well as biomass burning aerosol and dust associated with long-range transport from Central Africa and the Sahara, respectively. Our results indicate that the aerosol distribution is impacted by subsidence associated with zonal and meridional regional scale overturning circulations associated with the land-sea surface temperature contrast and orography over Ghana and Togo. Numerical tracer release experiments highlight the dominance of aged emissions from Accra on the observed pollution plume loadings over the ocean. The contribution of aged emission from Lomé and Cotonou is also evident above the marine boundary layer. Lagos emissions do not play a role for the area west of Cotonou. The tracer plume does not extend very far south over the ocean (i.e. less than 100 km from Accra), mostly because emissions are transported northeastward near the surface over land and westward above the marine atmospheric boundary layer. The latter is possible due to interactions between the monsoon flow, complex terrain and land-sea breeze systems, which support the vertical mixing of the urban pollution. This work sheds light on the complex – and to date undocumented – mechanisms by which coastal shallow circulations distribute atmospheric pollutants over the densely populated SWA region.


2021 ◽  
Author(s):  
Paul A. Makar ◽  
Craig Stroud ◽  
Ayodeji Akingunola ◽  
Junhua Zhang ◽  
Shuzhan Ren ◽  
...  

Abstract. Theoretical models of the Earth's atmosphere adhere to an underlying concept of flow driven by radiative transfer and the nature of the surface over which the flow is taking place: heat from the sun and/or anthropogenic sources are the sole sources of energy driving atmospheric constituent transport. However, another source of energy is prevalent in the human environment at the very local scale – the transfer of kinetic energy from moving vehicles to the atmosphere. We show that this source of energy, due to being co-located with combustion emissions, can influence their vertical distribution to the extent of having a significant influence on lower troposphere pollutant concentrations throughout North America. The effect of vehicle-induced turbulence on freshly emitted chemicals remains notable even when taking into account more complex urban radiative transfer-driven turbulence theories at high resolution. We have designed a parameterization to account for the at-source vertical transport of freshly emitted pollutants from mobile emissions resulting from vehicle-induced turbulence, in analogy to sub-grid-scale parameterizations for plume rise emissions from large stacks. This parameterization allows vehicle-induced turbulence to be represented at the scales inherent 3D chemical transport models, allowing its impact over large regions to be represented, without the need for the computational resources and much higher resolution of large eddy simulation models. Including this sub-grid-scale parameterization for the vertical transport of emitted pollutants due to vehicle-induced turbulence into a 3D chemical transport model of the atmosphere reduces pre-existing North American nitrogen dioxide biases by a factor of eight, and improves most model performance scores for nitrogen dioxide, particulate matter and ozone (for example, reductions in root mean square errors of 20, 9 and 0.5 percent, respectively).


Sign in / Sign up

Export Citation Format

Share Document