Investigation of aerodynamic interaction between the balloon and the ducted wind turbine in airborne configuration

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Naveen Prakash Noronha ◽  
Krishna Munishamaih

Abstract An aerodynamic analysis is presented in the current work, which estimates the separation distance between the balloon and the turbine in an airborne wind energy system (AWES). The stability of the structure of AWES depends on the aerodynamic interaction between the turbine and the balloon. A minimum gap must be maintained between the balloon and the wind turbine to reduce the interaction between the balloon and the turbine assembly. Three cases of AWES have been studied with a separation gap of 5 m, 10 m, and 16 m to estimate the minimum distance of separation between the balloon and the turbine. The aerodynamic interaction details suggest that a minimum distance of 13 m needs to be maintained between the turbine and the balloon to avoid the interaction between the balloon and turbine. Steady-state simulations of the rotor are run for various wind conditions to evaluate the efficiency of the duct-mounted configuration. The ducted turbine configuration saw a 7.4% increase in torque than the inducted turbine for a wind speed of 5 m s−1. A torque increase of 17.85% was observed when the separation distance was increased to 16 m from earlier 10 m.

Author(s):  
Yahya Dbaghi ◽  
Sadik Farhat ◽  
Mohamed Mediouni ◽  
Hassan Essakhi ◽  
Aicha Elmoudden

This paper describes a MPPT control of the stator powers of a DFIG operating within a wind energy system using the backstepping control technique. The objective of this work consists of providing a robust control to the rotor-side converter allowing the stator active power to be regulated at the maximum power extracted from the wind turbine, as well as maintaining the stator reactive power at zero to maintain the power factor at unity, under various conditions. We have used the Matlab/Simulink platform to model the wind system based on a 7.5 kW DFIG and to implement the MPPT control algorithm in a first step, then we have implemented the field-oriented control and the backstepping controller in a second step. The simulation results obtained were very satisfactory with a fast transient response and neglected power ripples. They furthermore confirmed the high robustness of the approach used in dealing with the variation of the internal parameters of the machine.


Author(s):  
Nicholas Tierno ◽  
Nicholas White ◽  
Mario Garcia-Sanz

This paper deals with the longitudinal flight control for a novel Airborne Wind Energy (AWE) system: the EAGLE System. It is a tethered lighter-than-air flyer wind turbine composed of a blimp, several aerodynamic airfoils (wings) with specific aerodynamic control surfaces (ailerons, elevator, rudder), a counter-rotating aerodynamic rotor for the wind turbine (four identical sections, symmetrically arranged, with three blades each), an electrical synchronous generator attached to the counter-rotating rotors, and a tether to secure the airship and to transmit the generated power. Additional information can be found in US Patent, Provisional Application No. 61/387,432 developed by the authors. The designed system proposed here supports a 2.5 kW generator and flies at approximately 100 meters. The mathematical model developed for the AWE system incorporates a hybrid blimp-airfoil design, modeled using a hybrid Cartesian-polar coordinate system to capture the dynamics of both the airship and the tether, and includes the effect of the counter-rotating aerodynamic rotor of the wind turbine, as well as the aerodynamic control surfaces. This paper presents the design of a robust Multi-Input Multi-Output (MIMO) controller for the 3×3 longitudinal flight dynamics of the tethered airborne wind energy system. The control system is designed by applying sequential MIMO robust Quantitative Feedback Theory (QFT) techniques.


2016 ◽  
Vol 22 (3) ◽  
pp. 628-633
Author(s):  
Florenţiu Deliu ◽  
Petrică Popov ◽  
Paul Burlacu

Abstract The paper analyzes the operation of electric power subsystem consisting of the naval marine wind turbine, the synchronous generator and the electric accumulators at linear and exponential variations of wind speed. The management system is analyzed using various functions of wind speed variation. This subsystem requires to capture the wind energy with maximum efficiency, so a diesel engine and a synchronous generator subsystem can be used only as a complementary source of energy.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Suad Danook ◽  
Kamal Tawfeeq ◽  
Esraa Mansoor

This paper incorporates the utilization of the wind energy system as an alternative source for Traditional source of energy, where it has been studied convert the kinetic energy in the wind to electric energy and the impact of humidity which effect on the density of air and the density of dry air is higher from humid. So the humid air meaning lower density then lower power from wind turbine.


2018 ◽  
Vol 10 (8) ◽  
pp. 2647 ◽  
Author(s):  
Peace-Maker Masukume ◽  
Golden Makaka ◽  
Patrick Mukumba

A plain conical diffuser is optimized to augment the wind speed at the throat of the diffuser. The diffuser is used in the construction of a diffuser augmented wind turbine (DAWT) to augment the power output of a bare wind turbine (BWT). Experiments with empty conical diffusers were done to determine optimum geometrical parameters for the diffuser to achieve maximum wind speed augmentation. Using the obtained optimum geometrical parameters, an optimized plain conical DAWT was designed, constructed, and field tested. A twin decentralized wind energy system which comprised a BWT and the optimized plain conical DAWT was erected. The electrical power output from these systems was measured and compared. The optimized plain conical DAWT reduced the cut-in wind speed of a BWT from 2.5 m/s to 1.6 m/s. The power output was increased by a factor of 2.5. This power output is comparable to that of flanged diffusers. However, flanged-DAWTs are more inert due to the addition of the flange. Its response to wind speed and direction is slow as compared to plain conical DAWT. Thus, it cannot fully exploit the potential of the wind. Also, the addition of the flange increases its production cost. Therefore, plain conical DAWT can replace flanged-DAWT in wind power augmentation.


2011 ◽  
Vol 347-353 ◽  
pp. 2130-2139
Author(s):  
Abdullrahman A. Al Shamma’a ◽  
Khaled E. Addoweesh ◽  
Ali Eltamaly

Wind energy has been most prevalently utilized to generate electric power due to non pollution to the environment and the conservation of fossil fuel resources. The energy generated from wind turbine depends on the wind site characteristics and the wind turbine parameters. So, the choice of certain wind turbine for specific site is very important in terms of price of electric energy generated from wind energy system. Therefore, optimal choice of wind turbine is one of the most crucial issues in the design of wind energy system, which can utilize wind energy as efficiently as possible and achieve the best economic benefits. So this paper introduces a new and simple mathematic formulation for the wind turbine-site matching problem, based on wind speed characteristics of any site and the power curve parameters of any wind turbine. Wind speed at any site is characterized by the scale parameter (c) and the shape parameter (k) of the Weibull distribution function. The power curve parameters of any wind turbine are characterized by the cut-in, rated, and furling speeds and the rated power. The new formulation method is derived based on a generic formulation for the product of the Capacity Factor (CF) and Normalized Power (PN). Three case studies are also presented to demonstrate the effectiveness of the proposed method to choose between a group of wind sites and a list of commercial wind turbines.


Author(s):  
Apapol Mahaveera ◽  
Sanya Pasuk

The paper presents the development of monitoring system for a wind turbine prototype system. The proposed monitoring system is developed by the Labview computer programming. The system can connect to the wind turbine via the internet – as well as acquire monitored values and upload values into memories. Meanwhile, the system will show real-time values. Operating staffs can observe the wind turbine using the monitoring system and can take any actions on-time, if the wind turbine is not working properly. The results of the monitoring system indicate that the monitoring system is able to work properly and information can be used for investigation - the wind turbine and system analysis. The investigation process is very important for wind turbine operation in order to transmit energy to destinations.


2021 ◽  
Vol 3 (1) ◽  
pp. 29-49
Author(s):  
Asif Khan ◽  
Saim Memon ◽  
Zafar Said

Integration of small-scale wind energy system to residential buildings for a target to achieve net-zero CO2 emissions is a revolutionary step to reduce the dependency on the national grid. In this paper, a predictive 20 kVA permanent magnet synchronous generator (PMSG) based small scale wind turbine is investigated at dynamic wind speed with a sensing control system to manage and monitor the power flow for a supply to a typical residential building. A control system is applied that regulates the power from the wind turbine. Results indicate that the proposed control system maximizes the power efficiency within the system. The maximum power generation capacity of the wind turbine is 20 kWh with 415 VAC and 50 Hz frequency. A storage system of 19.2 kWh that supplies the energy to the load side. The applied control unit improves the energy management and protects the power equipment during the faults. The research is conducted using MATLAB/SIMULINK and mathematical formulations.


Sign in / Sign up

Export Citation Format

Share Document