Preparation and Thermal Properties of High-Purified Molten Nitrate Salt Materials with Heat Transfer and Storage

ENERGYO ◽  
2018 ◽  
Author(s):  
Hongtao Zhang ◽  
Youjing Zhao ◽  
Jingli Li ◽  
Lijie Shi ◽  
Min Wang
Author(s):  
Hongtao Zhang ◽  
Youjing Zhao ◽  
Jingli Li ◽  
Lijie Shi ◽  
Min Wang

AbstractThis paper focuses on thermal stability of molten salts, operating temperature range and latent heat of molten salts at a high temperature. In this experiment, multi-component molten salts (purified Solar Salt) composed of purified NaNO


2014 ◽  
Vol 1010-1012 ◽  
pp. 429-436
Author(s):  
Jin Hua Shan ◽  
Jing Ding ◽  
Jian Feng Lu

Nitrate salt is important heat transfer and storage medium in solar thermal power system, but nitrate salt leakage and pollution in groundwater is seldom investigated. In this paper, the nitrate salt leakage and migration in the soil after rainfall are simulated and analyzed. During the nitrate leakage process, the liquid nitrate will solidify, and then a thin solidification layer of nitrate forms. According to the simulation result, the radius of the leakage opening mainly affects the radius of nitrate solidification layer, while the leakage velocity will influence the radius and thickness of salt layer. During the nitrate migration process after rainfall, the nitrate will gradually migrate to the groundwater, and the final migration domain of nitrate in the soil will be mainly determined by the radius of nitrate solidification layer.


1976 ◽  
Vol 4 (3) ◽  
pp. 181-189 ◽  
Author(s):  
S. K. Clark

Abstract An idealized model is proposed for heating of a pneumatic tire. A solution is obtained for the temperature rise of such a model. Using known thermal properties of rubber and known heat transfer coefficients, the time to reach thermal equilibrium is estimated.


2016 ◽  
Vol 128 (3) ◽  
pp. 1783-1792 ◽  
Author(s):  
Zhaoli Zhang ◽  
Yanping Yuan ◽  
Liping Ouyang ◽  
Qinrong Sun ◽  
Xiaoling Cao ◽  
...  

2021 ◽  
Vol 02 (01) ◽  
Author(s):  
A.G.N. Sofiah ◽  
◽  
M. Samykano ◽  
S. Shahabuddin ◽  
K. Kadirgama ◽  
...  

Since a decade ago, investigation on nanofluids has grown significantly owing to its enhanced thermal properties compared to conventional heat transfer fluids. This engineered nanofluid has been widely used in the thermal engineering system to improve their energy consumption by improving the thermal efficiency of the system. The addition of nano-size particles as additives dispersed in the base fluids proved to significantly either improve or diminish the behaviour of the base fluids. The behaviour of the base fluid highly depends on the properties of the additives material, such as morphology, size, and volume fraction. Among the variety of nanoparticles studied, the conducting polymers have been subject of high interest due to its high environmental stability, good electrical conductivity, antimicrobial, anti-corrosion property and significantly cheap compared to other nanoparticles. As such, the main objective of the present review is to provide an overview of the work performed on thermal properties performance of conducting polymers based nanofluids.


Sign in / Sign up

Export Citation Format

Share Document