scholarly journals An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network

2020 ◽  
Vol 10 (1) ◽  
pp. 630-641 ◽  
Author(s):  
Debasish Pattanaik ◽  
Sanhita Mishra ◽  
Ganesh Prasad Khuntia ◽  
Ritesh Dash ◽  
Sarat Chandra Swain

AbstractAnalysing the Output Power of a Solar Photo-voltaic System at the design stage and at the same time predicting the performance of solar PV System under different weather condition is a primary work i.e. to be carried out before any installation. Due to large penetration of solar Photovoltaic system into the traditional grid and increase in the construction of smart grid, now it is required to inject a very clean and economic power into the grid so that grid disturbance can be avoided. The level of solar Power that can be generated by a solar photovoltaic system depends upon the environment in which it is operated and two other important factor like the amount of solar insolation and temperature. As these two factors are intermittent in nature hence forecasting the output of solar photovoltaic system is the most difficult work. In this paper a comparative analysis of different solar photovoltaic forecasting method were presented. A MATLAB Simulink model based on Real time data which were collected from Odisha (20.9517∘N, 85.0985∘E), India. were used in the model for forecasting performance of solar photovoltaic system.

Author(s):  
Nelson Fumo ◽  
Juan Carlo Zambrano ◽  
Vicente Bortone

At the design stage of a solar photovoltaic (PV) system, equipment’s information from the specifications provided by manufacturers is the most reliable information. Parameters used to describe the performance are obtained under laboratory conditions, but the information is the appropriate for estimating the performance of the components of the solar PV system. When a system is in operation, the engineering models used at the design stage can also be used to predict the performance of the system. However, under real conditions, many factors can affect the performance which suggests that statistical models developed with field data could give better results to predict the performance of a solar PV system. Experimental data used in this study correspond to the energy generated by a 7.5 kW PV system installed to supply electricity to a research house at the University of Texas at Tyler, as well as the outdoor temperature and global horizontal solar radiation (as energy) recorder on site. The data is used to develop a multiple linear regression model and compare this model with an engineering model. Results show that the statistical model has a better quality than the engineering model.


2018 ◽  
Vol 7 (2.25) ◽  
pp. 143
Author(s):  
Bhuvaneswari C ◽  
Vijay B ◽  
Natarajan P

The primary and most universal measure of all kinds of work by nature is the energy. Coal, Natural gas, Oil and Nuclear energy are net energy yielders and primary sources of energy. The intent of this paper is to assess the performance of 15KW solar power plant installed in Priyadarshini Engineering College (PEC) campus, Vaniyambadi, Vellore District, Tamil Nadu. A 15 kW solar PV plant has been installed to supply electricity to the internet laboratory and library (lighting load). The results obtained from monitoring a 15 KW Solar Photovoltaic system installed on a library roofing of 10m height building. The system was monitored between (July-Sep2016) from 9.30AM to 4.30PM for three days in a week from Monday to Wednesday. The results can be used to provide manufacturers to develop their products and enhance the knowledge in the future in order to improve the design of the off-grid solar photovoltaic system, return of investment during these years. This work focuses on the performance of the solar photovoltaic plant (July-Sep2016) monthly average demand and annual performance parameters, Efficiency, fill factor,capacity Utilisation factor and the characteristics have been plotted in a graph. The graph is drawn between Generated power vs consumed power. The annual yield of the solar photovoltaic plant ranged from 6500-7000 Kwh and performance ratio of 78%. It has capacity Utilisation factor with 6.97%. 


Author(s):  
Mantas Darameičikas ◽  
Firdaus Muhammad Sukki ◽  
Siti Hawa Abu Bakar ◽  
Nazmi Sellami ◽  
Nurul Aini Bani ◽  
...  

<span>With growing demand in renewable energy, solar photovoltaic (PV) technology is becoming more popular. A number of research has been carried out to increase the efficiency of the PV system. One of them is improving the Switch Mode Power Supplies (SMPS) performance to ensure maximum solar energy extraction. This paper looks at buck type SMPS suitability for use in solar PV installed in residential houses. The main issues that affect the response from the output are identified. The work will utilise the LT SPICE software to carry out the simulation. The primary objective of the study is to design an improved converter controller which is more robust and is able to maintain constant output. The emphasis is on good efficiency, stability and low output voltage ripple. This could be achieved by using the current mode control (CMC) techniques – an alternative design to the voltage mode control technique (VMC). Results obtained via simulations reveal strong evidence of CMC superiority over the VMC.</span>


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Abraham Hizkiel Nebey ◽  
Biniyam Zemene Taye ◽  
Tewodros Gera Workineh

The majority of the Ethiopian population lives in rural areas and uses wood for domestic energy consumption. Using wood and fuel for domestic uses accounts for deforestation and health problems, which is also dangerous for the environment. The Ethiopian government has been planning to generate power from available renewable resources around the community. Therefore, determining the water surface potential of energy harvesting with floating solar photovoltaic system by using geographic information system is used to support decision-makers to use high potential areas. To identify useable areas for floating solar photovoltaic, factors that affect the usability were identified and weighted by using Analytical Hierarchy Processes. Thus, weighted values and reclassified values were multiplied to do the final usability map of floating solar photovoltaic with ArcGIS software. Due to the improper location of floating solar photovoltaic, efficiency is dropped. Therefore, the objective of this study was to identify the most usable surface of water bodies in Amhara regional, state irrigation dams for generating electrical power. The usability of the water surface for floating solar photovoltaic power plant was 63.83%, 61.09%, and 57.20% of Angereb, Rib, and Koga irrigation dams, respectively. The majority of the usable areas were found in the middle of the water surface. Nature water surface is a key factor in generating solar energy; it affects the floating solar photovoltaic and irradiance coming to the solar photovoltaic panel surface.


This research paper presents Maximum PowerPoint Tracking method used in solar photovoltaic grid connected PV system under different solar radiation and temperature. As because the output of the PV panel is non- linear hence current and voltage of the solar PV panel behaves as a non-linear characteristic which ultimately depends upon environmental parameter and thereby causing change is maximum output power of the PV panel. At different environmental condition the solar photovoltaic set its MPP. In order to operate the PV system at different MPP so as to extract the maximum available power it is required to control the buck-boost converter proportional to the output level of the PV panel. In this paper fuzzy logic based MPPT has implemented whose output is fed to the boost converter for increasing the efficiency of the system. PI controller is used as a current control technique for obtaining satisfactory performance. The goal of this paper is to achieve higher efficiency from solar photovoltaic system by operating the system at its MPP. MATLAB Simulink is used to model the solar photovoltaic system. The result obtained fro the simulation can be implemented in Homer for optimizing the fuel cost


2018 ◽  
Vol 7 (3.3) ◽  
pp. 553
Author(s):  
Sudhir. S. Chopade ◽  
Lalith Pankaj Raj. G. N ◽  
Prabakaran G

Indian power sector having the target of 175GW of power from renewable energy, out of that 40 GW from Rooftop solar Photovoltaic system by 2022. The installed capacity of solar photovoltaic until 2017 is about 14.77 GW only. Even though in depth study has been carried out on the performance analysis, there is no bench marking has been arrived for the Indian Roof Top Solar PV system. Hence this paper has made an attempt by calculating the various parameters like performance ratio, plant capacity utilization ratio for the two 20KWp grid connected rooftop power plant in Telangana state. In addition to the above, it needs to do in depth analysis of power quality issues on roof top grid tied system.  


2021 ◽  
Vol 9 (07) ◽  
pp. 130-139
Author(s):  
Akash Kumar Singh ◽  
◽  
A.K. Pandey ◽  

This paper presents simulation and modeling with optimization and analysis in solar photovoltaic systems, as well as the role and potential of maximum power extraction with controller. Matrix calculations for grid inverters with data graphing, their functions, MPPT algorithm applications, user interface design for monitoring PV modules, and interaction with inverter and converter are all aided by simulations of renewable energy systems. It looks at how well they work on a single-phase grid with a PV system. Simulink model for solar energy conversion systems allows you to examine the performance of Photovoltaic cells, modules, arrays, Maximum Power Points and inverters. Controllers are being tracked when the environment and physical variables change. A distributed MPPT scheme, which allows adjustment of each DC-link voltage, may be adopted for PV systems to achieve maximum PV module usage and solar energy extraction. The pattern that has been developed allows for independent management of each DC-link voltage in order to track the MPP for each string of PV panels. For various operating circumstances, simulation results are provided.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 253
Author(s):  
G Sreenivasa Reddy ◽  
T Bramhananda Reddy ◽  
M Vijaya Kumar

A solar photovoltaic panel or a solar PV module is a device, which is to be considered universality the basic constituent of a solar photovoltaic system and is a combination of series and parallel assembly of solar cells. The electrical performance of this solar photovoltaic module be contingent on different environmental situations like PV cells/module solar spectral (air mass), ambient temperature, solar irradiance, angle-of-incidence.With these dependent conditions, there will be a petite chance to operate at its maximum power point (MPP) Hence, a Perturb and Observe (P&O) MPP algorithm is employed which draws considerable power with the desired time response. In present work, the interfacing of Solar PV system with the utility grid system which is having 15kW based on the Voltage Oriented Control (VOC). The temperature of the individual photovoltaic cell and solar irradiation are to be considered as inputs for the simulation process, whereas the duty cycle of the DC-DC boost converter is an output of the P&O controller. Performance of this grid-connected PV system with VOC method is analyzed with the simulation results and %THD values of the voltage and current at coupling point is verified. The results show the superiority of VOC method and its high dynamic behavior under variable irradiation conditions.  


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


Author(s):  
Rahul Bisht ◽  
Afzal Sikander

Purpose This paper aims to achieve accurate maximum power from solar photovoltaic (PV), its five parameters need to be estimated. This study proposes a novel optimization technique for parameter estimation of solar PV. Design/methodology/approach To extract optimal parameters of solar PV new optimization technique based on the Jellyfish search optimizer (JSO). The objective function is defined based on two unknown variables and the proposed technique is used to estimate the two unknown variables and the rest three unknown variables are estimated analytically. Findings In this paper, JSO is used to estimate the parameters of a single diode PV model. In this study, eight different PV panels are considered. In addition, various performance indices, such as PV characteristics, such as power-voltage and current-voltage curves, relative error (RE), root mean square error (RMSE), mean absolute error (MAE) and normalized mean absolute error (NMAE) are determined using the proposed algorithm and existing algorithms. The results for different solar panels have been obtained under varying environmental conditions such as changing temperature and constant irradiance or changing irradiance and constant temperature. Originality/value The proposed technique is new and provides better results with minimum RE, RMSE, NMAE, MAE and converges fast, as depicted by the fitness graph presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document