Glass fiber reinforced rigid polyurethane foam: synthesis and characterization

e-Polymers ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 517-521 ◽  
Author(s):  
Mukesh Kumar ◽  
Raminder Kaur

AbstractThe present study emphasizes the reinforcement of rigid polyurethane foam (RPUF) by the addition of glass fibers (GFs) for diverse engineering applications. In contrast to the conventional RPUF, the foam developed in this case is castor oil based. The developed reinforced foam was tested for its mechanical properties such as hardness, tensile, flexural and compressive strength and for its morphology. Mechanical properties of the resulted reinforced RPUF were found to be improved with addition of the GF content. The foam density was also observed to be increased with the insertion of GF. The SEM results clearly indicated the decreased cell size in the reinforced RPUF.

2014 ◽  
Vol 69 (6) ◽  
Author(s):  
A. Mataram

Polypropylene (PP) including a type of plastic which ranks second on the most number of types of plastic waste after the type of High Density Polyethylene (HDPE). Glass fibers have superior mechanical properties of natural fibers. Because it has good mechanical properties, glass fibers currently plays an important role in the use of composite reinforcement. Mechanical properties of glass fiber owned and PP waste in environmental conditions that more conditions, it can be utilized as a composite reinforcement and matrix materials. This research was conducted by of injection molding method. The comparison between the volume fraction of the glass fiber matrix of type PP plastic waste with variation 0% fibers 100% matrixs, 10% fibers 90% matrixs, 20% fibers 80% matrixs, 30% fibers 70% matrixs, 40% fibers 60% matrixs, and 50 % fibers 50% matrixs. The optimum conditions obtained in this study was the comparison of variation occurs in 50% fibers volume fractions of 50% matrixs were: tensile stress was 24.30 N/mm2, tensile strain was 13.60%.


e-Polymers ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Dong-Jun Kwon ◽  
Joung-Man Park ◽  
Sang Hyuk Yum ◽  
Woo Il Lee

AbstractA lab scale structural reaction injection molding (S-RIM) piece of equipment was designed and used to fabricate glass fiber reinforced polydicyclopentadiene (p-DCPD) composites for three different fiber contents. In order to obtain information regarding the optimal process temperature (>80°C) and the curing time (<30 s), differential scanning calorimetry (DSC) was used to investigate the curing behavior of DCPD resin under isothermal conditions. Further, a norbornene-based silane treatment was used to improve the interfacial adhesion between the glass fibers and DCPD as confirmed by the micro-droplet pull-out test and scanning electron microscopy (SEM). Fabrication of glass fiber/p-DCPD composites with improved mechanical properties was carried out based on the optimized process conditions and surface treatment of glass fiber.


1984 ◽  
Vol 24 (12) ◽  
pp. 1000-1005 ◽  
Author(s):  
Kiyotake Morimoto ◽  
Toshio Suzuki ◽  
Ryutoku Yosomiya

2015 ◽  
Vol 766-767 ◽  
pp. 110-115 ◽  
Author(s):  
A. Shadrach Jeya Sekaran ◽  
K. Palanikumar ◽  
Pitchandi Kasivisvanathan ◽  
L. Karunamoorthy

Tensile, flexural and impact strength are considered as main criteria to determine the mechanical properties of any materials. These properties were determined for woven banana and glass fiber, reinforced epoxy composites. The hand-lay method of fabrication was employed in preparing the composites. Natural fibers offer both cost savings and reduction in density as well as environmental friendly when compare to glass fibers. As if the strength of natural fibers is not as remarkable as glass, fibers its specific properties are comparable.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Ragunath ◽  
A. N. Shankar ◽  
K. Meena ◽  
B. Guruprasad ◽  
S. Madhu ◽  
...  

The aim of this research work was to develop the optimal mechanical properties, namely, tensile strength, flexural strength, and impact strength of sisal and glass fiber-reinforced polymer hybrid composites. The sisal, in the form of short fiber, is randomly used as reinforcements for composite materials, which is rich in cellulose, economical, and easily available as well as glass fibers have low cost and have good mechanical properties. In addition, epoxy resin and hardener were for the fabrication of composites by compression molding. The selected materials are fabricated by compression molding in various concentrations on volume basics. The combination of material compositions is obtained from the design of experiments and optimum parameters determined by the Response Surface Methodology (RSM). From the investigation of mechanical properties, the sisal is the most significant factor and verified by ANOVA techniques. The multiobjective optimal levels of factors are obtained by LINGO analysis.


2020 ◽  
Vol 10 (11) ◽  
pp. 1900-1910
Author(s):  
Masturi ◽  
Dante Alighiri ◽  
Riful Mazid Maulana ◽  
Susilawati ◽  
Apriliana Drastisianti ◽  
...  

In this work, the effect of polyurethane binder and glass fiber as reinforcement on the physical and mechanical properties of mahogany (Swietenia mahagoni) leaves waste as biocomposite was investigated. Mahogany leaves waste has been successfully synthesized into a strong and lightweight biocomposite material by using a polyurethane binder and glass fiber as reinforcement. The mass content of polyurethane was varied between 0.25?1.50 g to obtain the optimum conditions. The contents of glass fiber added were between 0.1?0.5 g for biocomposite reinforcement. The addition of polyurethane and glass fiber mass fraction on biocomposite from mahogany leaves waste affected the physical and mechanical properties. The optimum ratio of mahogany leaves waste and polyurethane binder to produce biocomposite showed a compressive strength of 41.59 MPa, a density of 1.060 g/cm3, water absorption of 6.98%, and a thickness development of 7.27%. The addition of glass fiber material was proven to increase the compressive strength of biocomposites to 57.68 MPa. The addition of glass fiber to biocomposites also succeeded in improving physical properties. The testing of glass fiber reinforced biocomposites resulted in a density of 1.140 g/cm3, water absorption of 5.42%, and thickness development of 8.18%.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1041 ◽  
Author(s):  
Francisco J. Alonso-Montemayor ◽  
Quim Tarrés ◽  
Helena Oliver-Ortega ◽  
F. Xavier Espinach ◽  
Rosa Idalia Narro-Céspedes ◽  
...  

Automotive and industrial design companies have profusely used commodity materials like glass fiber-reinforced polypropylene. These materials show advantageous ratios between cost and mechanical properties, but poor environmental yields. Natural fibers have been tested as replacements of glass fibers, obtaining noticeable tensile strengths, but being unable to reach the strength of glass fiber-reinforced composites. In this paper, polyamide 6 is proposed as a matrix for cellulosic fiber-based composites. A variety of fibers were tensile tested, in order to evaluate the creation of a strong interphase. The results show that, with a bleached hardwood fiber-reinforced polyamide 6 composite, it is possible to obtain tensile strengths higher than glass-fiber-reinforced polyolefin. The obtained composites show the existence of a strong interphase, allowing us to take advantage of the strengthening capabilities of such cellulosic reinforcements. These materials show advantageous mechanical properties, while being recyclable and partially renewable.


Sign in / Sign up

Export Citation Format

Share Document