Synthesis of high-temperature thermally expandable microcapsules and their effects on foaming quality and surface quality of foamed ABS materials

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 519-527
Author(s):  
Wei Gong ◽  
Xianglin Pei ◽  
Xiaogang Yin ◽  
Daming Ban ◽  
Hai Fu ◽  
...  

AbstractIn this paper, acrylonitrile and hydroxypropyl acrylate are used as the binary polymerization monomers, and isooctane is used as the foaming agent to prepare high-temperature thermally expandable microcapsules. Analysis of the effect of blowing agent and crosslinking agent on the expansion properties of high-temperature thermally expandable microcapsules, the effects of foaming agent azodicarbonamide (ADCA) and micro-expansion capsule on the surface quality and foaming quality of foamed acrylonitrile–butadiene–styrene (ABS) products were investigated. The foamed product prepared by the high-temperature microcapsule has a good surface quality, the gloss is 52.3, the cell is not easily deformed, and the volume fraction is 4%; the foamed ABS/ADCA material has poor cell uniformity, the cell is easily deformed, the volume fraction is 6.5%, the surface quality is poor, and the gloss is only 8.7.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


2011 ◽  
Vol 117-119 ◽  
pp. 332-334 ◽  
Author(s):  
Wen Yan Wang ◽  
Yu Wu ◽  
Jing Pei Xie ◽  
Gao Lu ◽  
Xiao Ming Dong ◽  
...  

In this study, calcium nitrate(Ca(NO3)2•4H2O) and phosphorus pentoxide(P2O5) were used as precursor to prepare hydroxyapatite(HA) layer by sol-gel method, followed by a dipping-coating method to coat HA layer onto Ti. Phase formation and microstructure were investigated by XRD and SEM to study the influence of atmosphere on the property of HA layer. The results revealed that there exists no large cracks in the layer which was heated in the nitrogen, leading to a good surface quality compared with the layer which was heated in the air. And there is no obvious difference in crystallinity and volume fraction of HA in the layer when adopting heat treatment in different atmospheres.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


Author(s):  
F J Ma ◽  
D M Guo ◽  
R K Kang ◽  
Y J Ren

It is usually hard to obtain a good surface quality of carbon/carbon (C/C) composite by turning due to its non-homogeneity and anisotropy. Contrasting experiments of ultrasonic assisted turning (UAT) and common turning (CT) of the C/C composite were carried out using a polycrystalline diamond tool. The cylindrical surface of the turning was classified into four typical types based on different fibre orientations. The influence of fibre distribution characteristics on surface roughness was analysed by measuring and comparing the roughness of these surfaces, and an evaluation method of surface quality for the C/C composite after turning was established. The results of UAT experiments on the C/C composite show that UAT could effectively reduce the machining defect. The roughness of typical surfaces 1 and 2 machined using UAT was about 20 per cent lower than that using CT.


2021 ◽  
Author(s):  
Guangyan Guo ◽  
Qi Gao ◽  
Quanzhao Wang ◽  
Yuanhe Hu

Abstract In order to improve the surface grinding quality of high volume fraction aluminum matrix composites, the cutting tool models with different rake angles are established, the grinding process is simulated, and the material removal mechanism and the broken state of SiC particles are obtained. Through single factor experiment, the 60% volume fraction SiCp/Al2024 composites are ground by diamond grinding rod with 3mm diameter, the surface roughness (Ra) is measured, and the surface and sub-surface quality of SiCp/Al2024 composites with meso-scale grinding is investigated. Meanwhile, the influence mechanism of grinding depth (ap) on surface quality is put forward, and the influence of different grinding depth on the fragmentation of SiC particles in sub-surface layer is discussed, which verifies the correctness of grinding simulation. The relevant research and theoretical model are of great significance to the study of grinding properties of composite materials.


Sign in / Sign up

Export Citation Format

Share Document