scholarly journals Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 793-810
Author(s):  
Xipo Zhao ◽  
Dianfeng Zhang ◽  
Songting Yu ◽  
Hongyu Zhou ◽  
Shaoxian Peng

Abstract Poly(butylene succinate) (PBS) has good impact strength and high elongation at break. It is used to toughen biodegradable poly(lactic acid) (PLA) materials because it can considerably improve the toughness of PLA without changing the biodegradability of the materials. Therefore, this approach has become a hotspot in the field of biodegradable materials. A review of the physical and chemical modification methods that are applied to improve the performance of PLA/PBS blends based on recent studies is presented in this article. The improvement effect of PLA/PBS blends and the addition of some common fillers on the physical properties and crystallization properties of blends in the physical modification method are summarized briefly. The compatibilizing effects of nanofillers and compatibilizing agents necessary to improve the compatibility and toughness of PLA/PBS blends are described in detail. The chemical modification method involving the addition of reactive polymers and low-molecular-weight compounds to form cross-linked/branched structures at the phase interface during in situ reactions was introduced clearly. The addition of reactive compatibilizing components is an effective strategy to improve the compatibility between PLA and PBS components and further improve the mechanical properties and processing properties of the materials. It has high research value and wide application prospects in the modification of PLA. In addition, the degradation performance of PLA/PBS blends and the methods to improve the degradation performance were briefly summarized, and the development direction of PLA/PBS blends biodegradation performance research was prospected.

2017 ◽  
Vol 88 (15) ◽  
pp. 1735-1744 ◽  
Author(s):  
Elwathig AM Hassan ◽  
Salah Eldin Elarabi ◽  
You Wei ◽  
Muhuo Yu

Poly (lactic acid)/poly (butylene succinate) (PLA/PBS) blend fibers with high miscibility and improved elongation with comparable mechanical strength were fabricated using the melt spinning process in order to reduce the impact on the environment by long-lasting plastics-based composites. The PLA/PBS blend fibers produced in different ratios have revealed high miscibility, which has been confirmed by morphological studies. The thermal properties showed the melting temperature of PLA at 167.13℃ and PLA/PBS blends at 169.18℃, and an increased content of PBS in blends also led to improved crystallinity. Importantly, during tensile testing, it is observed that the fracture behavior of the specimen changed from brittle fracture of neat PLA to ductile fracture of the blends, as demonstrated by the significant increase in the elongation at break with comparable tensile strength and modulus. Furthermore, the washing fastness, rubbing fastness, exhaustion values, strength loss, and shade depth ( K/ S value) for the knitted and dyed fibers were explored. It was found that the exhaustion and K/ S value increased when the temperature increased, but the strength decreased. The exhaustion and K/ S value of PLA/PBS blend fabrics improved compared to pure PLA fabric, with excellent washing and rubbing fastness.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2422 ◽  
Author(s):  
Zhiwen Zhu ◽  
Hezhi He ◽  
Bin Xue ◽  
Zhiming Zhan ◽  
Guozhen Wang ◽  
...  

In this study, biodegradable poly(butylene succinate)/poly(lactic acid) (PBS/PLA) in-situ submicrofibrillar composites with various PLA content were successfully produced by a triple-screw extruder followed by a hot stretching−cold drawing−compression molding process. This study aimed to investigate the effects of dispersed PLA submicro-fibrils on the thermal, mechanical and rheological properties of PBS/PLA composites. Morphological observations demonstrated that the PLA phases are fibrillated to submicro-fibrils in the PBS/PLA composites, and all the PLA submicro-fibrils produced seem to have a uniform diameter of about 200nm. As rheological measurements revealed, at low frequencies, the storage modulus (G’) of PBS/PLA composites has been increased by more than four orders of magnitude with the inclusion of high concentrations (15 wt % and 20 wt %) of PLA submicro-fibrils, which indicates a significant improvement in the elastic responses of PBS melt. Dynamic Mechanical Analysis (DMA) results showed that the glass transition temperature (Tg) of PBS phase slightly shifted to the higher temperature after the inclusion of PLA. DSC experiments proved that fiber morphology of PLA has obvious heterogeneous nucleation effect on the crystallization of PBS. The tensile properties of the PBS/PLA in-situ submicrofibrillar composites are also improved compared to neat PBS.


2016 ◽  
Vol 38 (12) ◽  
pp. 2841-2851 ◽  
Author(s):  
Saowaroj Chuayjuljit ◽  
Chutima Wongwaiwattanakul ◽  
Phasawat Chaiwutthinan ◽  
Pattarapan Prasassarakich

Sign in / Sign up

Export Citation Format

Share Document