High Isolation Compact Four-Port MIMO Antenna Loaded with CSRR for Multiband Applications

Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 415-427 ◽  
Author(s):  
Amit Kumar ◽  
Abdul Quaiyum Ansari ◽  
Binod Kumar Kanaujia ◽  
Jugul Kishor

Abstract In this paper, a compact 4×4 multiple-input-multiple-output (MIMO) patch antenna has been presented for triple band operation. Out of the 4 antennas, two are tuned to cover DCS (Digital Cellular System) downlink and two are tuned to cover DCS uplink frequency separately along with two common operating frequency centered around 2.45 GHz and 875 MHz. Four complementary split-ring resonators (CSRRs) have been etched in the ground plane exactly below the four patch antennas for attaining compactness from 0.36λ02 to 0.13λ02. In addition to this, by optimizing CSRRs outer radius, one lower common band operation of around 875 MHz (0.031λ02) has been obtained. Two, square split-ring resonators (SRRs) are placed between patch antennas to increase isolation by almost 7 dB around DCS band. The proposed MIMO antenna has been fabricated on an FR4 substrate (60×60×0.8) mm3 with dielectric constant, εr=4.3 having an antenna area of 0.13λ02. The Proposed MIMO antenna has two common operating bands, 850–900 MHz, 2410–2466 MHz and one individual band from 1725–1770 MHz for one group of two antennas of dimensions 17×22 mm2 and another individual band from 1800–1845 MHz for another group of two antennas of dimensions 17×23 mm2, where reflection coefficient is less than −10 dB with a minimum isolation of 17 dB. Diversity performance of the proposed MIMO antenna has been verified experimentally on all three bands. However, there is a slight deviation in the DCS operating band due to two different groups of antennas.

Author(s):  
Rajib Kumar Dash ◽  
Puspendu Bikash Saha ◽  
Dibyendu Ghoshal ◽  
Gopinath Palai

In this article two fractal geometry-based slotted patch antennas are designed to achieve wideband response with multiband characteristics and reduced cross polarized radiation in both E- and H-plane for all the resonating bands. The proposed antennas are fed with microstrip line feeding formed on a FR4 substrate of size 0.25𝜆0 × 0.25𝜆0 × 0.02𝜆0 mm3 and loaded with a partial ground plane at the bottom of the substrate. HFSS is used to design and simulate both the antennas. Wideband behavior and impedance matching of Antenna-1 are improved by optimizing the factor of iteration and length of the ground plane. Due to addition of 3 identical split ring resonators (SRR) with the antenna geometry leads to achieve multiband response in Antenna-2. The dimensions of the SRR connectors and feedline have been optimized through parametric analysis to match the impedance properly at all the three resonating bands. It has been found that simulated and measurement results of both the antennas are properly matched.


2021 ◽  
Author(s):  
Karthigaiveni S ◽  
R Pandeeswari ◽  
Deivalakshmi S

Abstract An aperture coupled two element metamaterial (MTM) antenna suitable for multiple input multiple output (MIMO) applications in the frequency band of 7.525-9.1GHz is proposed. This three-layered structure utilizes a vertical array of rectangular complementary split ring resonators (CSRR) between the contiguously placed circular non-bianisotropic complementary split ring resonator (NBCSRR) radiating elements for enhancement of isolation. This antenna achieves a maximum of 47dB isolation through this MNG structure insertion in the frequency band for 0.11 λ0 separation of the two antenna elements. The proposed antenna achieves a fractional -10dB impedance bandwidth of 18.94% and has a peak gain of 8.15dB. The efficiency of the antenna is 84.14% and the envelope correlation coefficient is less than 0.03 in the operating band. The antenna is low profile with an overall size of 0.85 λ0 x 0.45 λ0 x 0.133 λ0 and is suitable for X-band military applications.


2019 ◽  
Vol 18 (1) ◽  
pp. 43-46
Author(s):  
Murtala Aminu-Baba ◽  
Mohammad Kamal A. Rahim ◽  
Farid Zubir ◽  
Adamu Y. Iliyasu ◽  
Mohd Fairus Mohd Yusoff ◽  
...  

A compact triband microstrip patch MIMO antenna is proposed for WLAN applications. The antenna consists of two patches antenna elements, which are orthogonally placed to each other for high isolation at 2.4, 2.8 and 5.8 GHz frequency bands. On its ground plane, a Complementary Split Ring Resonators (CSRRs) is etched for size reduction and multiband generation. The proposed compact MIMO antenna covers an entire size of 58 x 45 x 1.6 mm3, with the patch size of 13.3 x 17.1 mm2. A 79% size reduction at 2.45 GHz was achieved for miniaturization, with a very low mutual coupling (S21 and S12) of -32 dB at all bands.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


2011 ◽  
Vol 59 (8) ◽  
pp. 2758-2765 ◽  
Author(s):  
Óscar Quevedo-Teruel ◽  
Malcolm Ng Mou Kehn ◽  
Eva Rajo-Iglesias

2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.


DYNA ◽  
2015 ◽  
Vol 82 (193) ◽  
pp. 9-15
Author(s):  
Iván Eduardo Díaz Pardo ◽  
Carlos Arturo Suárez Fajardo ◽  
Gustavo Adolfo Puerto Leguizamón

This paper presents the study of the ground plane effect in passband filters using metamaterial cells in Open Split Ring Resonators (OSRR) structures on microstrip substrates. Three different configurations have been proposed, namely: by removing partially the ground plane of the OSRR cell back end, by windows design over the ground plane at the back end of each cell and by placing a full ground plane. The conducted analysis shows that the filter transmission response featuring a ground plane including windows proved to be the most flattened with the middle bandwidth of the three configurations. On the other hand, the performance of these filters is similar to a conventional filter based on three-pole microstrip technology but with a considerable reduction in size of about 60%.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document