A compact single element dielectric resonator MIMO antenna with low mutual coupling

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashim Kumar Biswas ◽  
Ujjal Chakraborty

Abstract A two-port multiple input multiple output (MIMO) dielectric resonator antenna is proposed where two orthogonally connected feed lines are combined to unite two orthogonally produced modes. The feed lines build a hybrid network. The backplane is defected by a circular defected ground structure (CDGS), which is extended by two rectangular slits placed orthogonally with the input ports. The antenna uses a single ‘H/I’-shaped dielectric resonator (DR) element. It covers frequency spectrum from 7.29 to 10.65 GHz and fulfils the international telecommunication union (ITU) (8–8.5 GHz) and Maritime Radio Navigational (8.85–9 and 9.2–9.5 GHz) application bands. The antenna offers very high port isolation (>18 dB) and diversity properties throughout the whole application band. The antenna also provides circular polarization (AR ≤ 3 dB) in the operating ranges from 8 to 8.25 GHz and 8.85 to 8.9 GHz. Simulated and measured results make clear to the antenna most suitable for MIMO operation.

Author(s):  
G. Divya ◽  
K. Jagadeesh Babu ◽  
R. Madhu

Abstract This article introduces a cylindrical dielectric resonator antenna (CDRA) fed with a rhombic ring-shaped tapered feed for Multiple-Input-Multiple-Output (MIMO) applications. The proposed hybrid MIMO CDRA resonates at four frequency bands 2.5, 5.09, 6.8, and 9.0 GHz with isolation levels of 22, 34.22, 30.55, and 18.55 dB. Isolation enhancements are achieved by introducing “L” shaped slots on the partial ground plane. Parametric analysis is performed to validate the optimized dimensions of the tapered feed without and with DRA and defected ground structure. Diversity performance is examined by using envelope correlation coefficient and diversity gain. The proposed antenna operates in the S, C, and X-bands and is suitable for RF communication mobile broadband services, Wi-Fi, radar, and satellite applications. Good agreement is observed between simulated and measured results.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Kumar Yadav ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract In this article, cross-shaped metallic parasitic strips based two radiator element multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) is excited by quadrature wave transformer microstrip feedline, designed, simulated and fabricated for ultra-wideband (UWB) applications. The proposed MIMO antenna structure is implemented with the help of two rectangular-shaped radiator elements that supports three modes HE11δ , HE21δ , and HE12δ at 4.4, 8.3, 10.8 GHz respectively. These fundamental and higher-order modes are supported to wide impedance bandwidth. Inverted T-shaped metallic strip and ground stub to improve the impedance bandwidth 104.6% (3.3–10.8 GHz) with 5.7 dBi peak gain, to enhance the coupling coefficient by stub, scissor-shaped defected ground structure and cross-shaped metallic parasitic strips are used in the existed structure. The MIMO diversity parameters are implemented as simulated ECC ≤ 0.003, DG ≥ 9.98 dB, and CCL ≤ 0.68. All the obtained MIMO antenna parameters are within the acceptable limit for providing high data rate for UWB applications.


Author(s):  
S. Salihah ◽  
M. H. Jamaluddin ◽  
R. Selvaraju ◽  
M. N. Hafiz

In this article, a Multiple-Input-Multiple-Output (MIMO) H-shape Dielectric Resonator Antenna (DRA) is designed and simulated at 2.6 GHz for 4G applications. The proposed structure consists of H-shape DRA ( =10) which is mounted on FR4 substrate ( =4.6), and feed by two different feeding mechanisms. First, microstrip with slot coupling as Port 1. Second, coaxial probe as Port 2. The electrical properties of the proposed MIMO H-shape DRA in term of return loss, bandwidth and gain are completely obtained by using CST Microwave Studio Suite Software. The simulated results demonstrated a return loss more than 20 dB, an impedance bandwidth of 26 % (2.2 – 2.9 GHz), and gain of 6.11 dBi at Port 1. Then, a return loss more than 20 dB, an impedance bandwidth of 13 % (2.2 – 2.7 GHz), and gain of 6.63 dBi at Port 2. Both ports indicated impedance bandwidth more than 10 %, return loss lower than 20 dB, and gain more than 10 dBi at 2.6 GHz. The simulated electrical properties of the proposed design show a good potential for LTE applications.


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.


2017 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
C. J. Malathi ◽  
D. Thiripurasundari

A 2´1 (two-element) multiple-input multiple-output (MIMO) patch antenna system is designed and fabricated for (2.43 – 2.57) GHz LTE band 7 operation. It uses comple-mentary split -ring resonator (CSRR) loading on its ground plane for antenna miniaturization. This reduces the single-element antenna size by 76%. The total board size of the proposed MIMO antenna system, including the GND plane is 50´50´0.8mm3, while the single-patch antenna element has a size of 18.5 ´16mm2. The antenna is fabricated and tested. Measured results are in good agreement with simulations. A minimum measured isolation of 10 dB is obtained given the close interelement spacing of 0.17λ.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Nuramirah Mohd Nor ◽  
Mohd Haizal Jamaluddin

In this paper, a dual band multiple-input-multiple-output dielectric resonator antenna for wireless local area network application is presented. Two identical feeding techniques are used to feed the proposed antenna. The simulated impedance bandwidth for both port are the same which are 6.5% at 2.45 GHz and 3% at 5.2 GHz. The DRA also has an acceptable value of isolation over the operating frequency. The simulated S-parameter and other multiple-input-multiple-output parameters are studied and observed.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Mohamed M. Morsy

A compact dual-band multiple-input-multiple-output (MIMO) antenna for LTE700, GSM1900, and UMTS applications with high isolation is presented. To enhance impedance matching and multiband operation, two inverted L-shaped monopoles are printed in the circular slot of the ground plane. The single element design is mirrored along the diameter of the circular slot of the ground plane. A strip is employed between the two radiators in order to mitigate the mutual coupling effect and enhance the impedance matching at operating bandwidths. Moreover, two slits are inserted in the ground plane in order to disturb the current distribution between radiating elements, and hence, the isolation between elements is improved. The measured 10 dB return loss bandwidth is 100 MHz (698–798 MHz) and 359 MHz (1765-2124 MHz) over the LTE700, GSM1900, and UMTS bands. The measured isolation between the two ports is less than -13 dB over the LTE700 bands while it is recorded to be less than -17 dB over the GSM1900 and UMTS bands. In addition, parametric studies of the proposed MIMO antenna are performed, and the surface current analysis is discussed to show the effect of the isolation structure. The radiation patterns are measured, and envelope correlation coefficient is calculated. The simulated results are in good agreement with measurements.


Author(s):  
B Shruthi, Et. al.

A multiple-input-multiple-output lightweight printed ultrawideband antenna among a dimension about 40×50mm2to minimise the coupling between these two antennas, the proposed antenna with a quarter circular radiating patch, with defected ground structure is designed. The antenna developed by MIMO is highly isolated, stronger than -15dB. In the working band, from 2.67GHz to 14GHz. The simulation indicates that the proposed MIMO antenna will balance the complete enhanced band with a broad bandwidth by making use of CST. It operates at 5.83GHz, 8.07GHz, 12.28GHz and bandwidth tends to cover the ultrawideband range. UWB band and high isolation, that assemblesit perfect for any application of wireless modules in the UWB range, in order to minimise coupling. For indoor applications and wireless applications these frequency range is used.


Sign in / Sign up

Export Citation Format

Share Document