scholarly journals Acute Drought Is an Important Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands

Author(s):  
Sigrid Netherer ◽  
Bernd Panassiti ◽  
Josef Pennerstorfer ◽  
Bradley Matthews
2008 ◽  
Vol 53 (Special Issue) ◽  
pp. 38-44 ◽  
Author(s):  
W. Grodzki

A dramatic forest decline due to the bark beetle outbreak, which occurs in the Norway spruce stands in the Western Beskidy (southern Poland) since 2003, was started after severe physiological drought during winter time. An analysis describing some spatio-temporal characteristics of this process, with special regard to the patterns of bark beetle occurrence related to root fungal diseases, is presented. In 2003 the bark beetle occurrence level assessed as high and catastrophic was recorded on 40% of the area, while in 2006 – on 59%. The range of <I>Armillaria</I> root disease and bark beetle outbreak increased towards higher altitudes, including the zone above 1,000 m a.s.l. The wind damage in 2004 and 2007, and high temperatures in the summer 2006, further stimulated the increase in bark beetle populations level. Some conclusions on possible development of the outbreak and recommendations concerning related needs in forest protection, are given.


2017 ◽  
Vol 78 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Wojciech Grodzki ◽  
Wojciech Gąsienica Fronek

Abstract At the end of 2013, Norway spruce stands in the area of the Tatra National Park were severely damaged by strong storms especially in the Kościeliska Valley region. In the following spring of 2014, a survey recording the occurrence of the spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) was initiated in order to describe the dynamics of beetle reproduction in relation to protection measures executed in wind-damaged stands. Ten research plots with 20 trees each were established in a socalled active protection zone, where the broken and fallen trees had been processed and removed in 2014, and in a passive protection zone, where no actions were taken, and the dynamics of Norway spruce mortality due to bark beetle infestation including quantitative parameters (infestation density, sex ratio of beetle populations) were examined. The entomological analyses were performed on 25 × 25 cm large bark samples taken from four (active zone) or two (passive zone) tree sections. In the first year of the survey, no infested standing trees were recorded on the plots and the colonisation of fallen and broken trees was very weak. In the second year (2015), infestations appeared in larger numbers on the plots with passive compared to active protection but the infestation density was 0.89 mating chambers per 1 dm2 regardless of the protection status. In the third year (2016), most of the remaining living spruces had been infested with a mean density of 0.82 m.ch. per 1 dm2. In 2015, the proportion of females in the beetle population was 65.8% being higher in the active (68.4%) than the passive (64.0%) protection zone, while in 2016 the proportion was 63.5% and in this case slightly higher in the passive protection zone (63.9% as compared to 63.2%). These results are in accordance with patterns observed in wind-damaged Norway spruce stands of other areas in Poland and Europe and demonstrate the usefulness of forest management procedures in mitigating I. typographus outbreaks.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Georgi Georgiev ◽  
Margarita Georgieva ◽  
Stelian Dimitrov ◽  
Martin Iliev ◽  
Vladislav Trenkin ◽  
...  

The Chuprene Reserve was created in 1973 to preserve the natural coniferous forests in the Western Balkan Range in Bulgaria. The first infestations by European spruce bark beetle (Ips typographus) were registered in Norway spruce (Picea abies) stands in the mid-1980s. The aim of this study is to assess the damages caused by I. typographus in the Chuprene Reserve using remote sensing techniques – unmanned aerial vehicle (UAV) images, airborne images, and satellite images of European Space Imaging (EUSI), combined with terrestrial verification. High-resolution images in four bands of the electromagnetic spectrum and in a standard RGB channel were taken in 2017 via a multispectral camera ‘Parrot Sequoia’, integrated with a specialized professional UAV system eBee ‘Flying Wing’. The health status of Norway spruce stands in the reserve was assessed with the normalized difference vegetation index, based on the digital mixing of imagery captured in the red and near infrared range. The dynamic of bark beetle attacks was studied in GIS on the basis of maps generated from photographic surveys, airborne images taken in 2011 and 2015, and satellite images from 2020. In the UAV-captured area (314.0 ha), the size of Norway spruce stands attacked by I. typographus increased from 7.6 ha (2.4%) in 2011 to 44.9 ha (14.3%) in 2020. The satellite images showed that on the entire territory of the Chuprene Reserve (1451.9 ha), I. typographus killed spruce trees on 137.4 ha, which is 9.6% of the total area.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 163
Author(s):  
Jan Světlík ◽  
Jan Krejza ◽  
Pavel Bednář

Tree growth depends on many factors such as microsite conditions, vitality, and variations in climate and genetics. It is generally accepted that higher growth indicates both an economic benefit and better vitality of any tree. Here we use a modified approach of evaluating tree social area to study mutual tree competition based on the orientation and shape of trees social area. The investigation was performed in nine Norway spruce stands in the Czech Republic. The objective of this study performed from 2008 to 2012 was to quantify relative tree radial increments with respect to the lowest and highest competition found in specific sectors of tree social area (AS). Specific groups of trees (tree classes) were evaluated according to their classes (dominant, co-dominant and sub-dominant) and their composition status in ninety-degree sectors of AS using established classifying rules. The results showed that a spatially-available area (AA) is an inappropriate parameter for predicting tree growth, whereas AS provided robust explanatory power to predict relative radial growth. Tree size was observed as an important indicator of relative radial increments. A significantly positive correlation was found for a radial increment of sub-dominant trees with the lowest competition from western directions; whereas a negative correlation was observed when the lowest competition was observed from eastern directions. For dominant trees, there was an evident growth reaction only when more than 50% of the AS was oriented towards one of the cardinal points. Individual differences in the orientation of tree AS may be important parameters with regard to competition and its spatial variability within an area surrounding a particular tree and deserve more detailed attention in tree growth models and practice.


Sign in / Sign up

Export Citation Format

Share Document