scholarly journals Forest cover assessment using remote-sensing techniques in Crete Island, Greece

2021 ◽  
Vol 13 (1) ◽  
pp. 345-358
Author(s):  
Mohamed Elhag ◽  
Silevna Boteva ◽  
Nassir Al-Amri

Abstract Remote-sensing satellite images provided rapid and continuous spectral and spatial information of the land surface in the Sougia River catchment by identifying the major changes that have taken place over 20 years (1995–2015). Vegetation indices (VIs) of normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and leaf area index were derived for monitoring and mapping variations in vegetation cover. The quantified decrease in NDVI was found to be 4% between 1995 and 2005, and further decreased by 77.1% between 2005 and 2015; it declined back to almost the initial status of 1995. EVI results were inconsistent suggesting that seasonal crops influence the temporal distribution of vegetation cover. The temporal variations in the VIs were important input parameters for the modelling and management of the catchment’s hydrological behaviour. Image classification found that the 4- and the 6-class classifications between 1995 and 2005 were unstable and produced, respectively, a 13.8% and 16.2% total change between classes. Meanwhile, the 8-, 10- and the 12-class showed an almost horizontal line with a minor fluctuation of less than 0.05%. The results of the post-classification change detection analysis indicated a land degradation in terms of natural vegetation losses with sparser or even with no natural vegetation cover.

2021 ◽  
Author(s):  
Shawn D Taylor ◽  
Dawn M Browning ◽  
Ruben A Baca ◽  
Feng Gao

Land surface phenology, the tracking of seasonal productivity via satellite remote sensing, enables global scale tracking of ecosystem processes, but its utility is limited in some areas. In dryland ecosystems low vegetation cover can cause the growing season vegetation index (VI) to be indistinguishable from the dormant season VI, making phenology extraction impossible. Here, using simulated data and multi-temporal UAV imagery of a desert shrubland, we explore the feasibility of detecting LSP with respect to fractional vegetation cover, plant functional types, and VI uncertainty. We found that plants with distinct VI signals, such as deciduous shrubs with a high leaf area index, require at least 30-40\% fractional cover on the landscape to consistently detect pixel level phenology with satellite remote sensing. Evergreen plants, which have lower VI amplitude between dormant and growing seasons, require considerably higher cover and can have undetectable phenology even with 100\% vegetation cover. We also found that even with adequate cover, biases in phenological metrics can still exceed 20 days, and can never be 100\% accurate due to VI uncertainty from shadows, sensor view angle, and atmospheric interference. Many dryland areas do not have detectable LSP with the current suite of satellite based sensors. Our results showed the feasibility of dryland LSP studies using high-resolution UAV imagery, and highlighted important scale effects due to within canopy VI variation. Future sensors with sub-meter resolution will allow for identification of individual plants and are the best path forward for studying large scale phenological trends in drylands.


2021 ◽  
Vol 10 (6) ◽  
pp. 3507-3518
Author(s):  
Khalifah Insan Nur Rahmi ◽  
Muhammad Dimyati

Agricultural drought is one of the hydrometeorological disasters that cause significant losses because it affects food stocks. In addition, agricultural droughts, impact the physical and socio-economic development of the community. Remote sensing technology is used to monitor agricultural droughts spatially and temporally for minimizing losses. This study reviewed the literatures related to remote sensing and GIS for monitoring drought vulnerability in Indonesia. The study was conducted on an island-scale on Java Island, a provincial-scale in East Java and Bali, and a district-scale in Indramayu and Kebumen. The dominant method was the drought index, which involves variable land surface temperature (LST), vegetation index, land cover, wetness index, and rainfall. Each study has a strong point and a weak point. Low-resolution satellite imagery has been used to assess drought vulnerability. At the island scale, it provides an overview of drought conditions, while at the provincial scale, it focuses on paddy fields and has little detailed information. In-situ measurements at the district scale detect meteorological drought accurately, but there were limitations in the mapping unit's detailed information. Drought mapping using GIS and remote sensing at the district scale has detailed spatial information on climate and physiographic aspects, but it needs temporal data monitoring.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Jaroslav Nýdrle

This article focuses on the issue of using data obtained through remote sensing methods  in the administrative district of the municipality with extended powers of Liberec (the Czech Republic). The first part of the article discusses the question of using Earth remote sensing data for city agendas in general. Then, it presents a questionnaire, created for evaluating the needs of the Liberec municipality. This questionnaire, focusing on the use of remotely sensed data, was created on the basis of a review of relevant literature. Based on the results of the questionnaire, the following spatial information requirements were chosen to be addressed: land surface temperature map - LST (Landsat 8), vegetation index - NDVI (Sentinel 2, Planet Scope), normalized difference water index - NDWI, NDWI 2 (Sentinel 2), normalized difference built-up index - NDBI (Sentinel 2). All data obtained during the creation of this study have become part of the database of the Urban Planning and GIS Department and are available to employees of the City of Liberec.


2021 ◽  
Vol 13 (14) ◽  
pp. 2730
Author(s):  
Animesh Chandra Das ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Drought is one of the detrimental climatic factors that affects the productivity and quality of tea by limiting the growth and development of the plants. The aim of this research was to determine drought stress in tea estates using a remote sensing technique with the standardized precipitation index (SPI). Landsat 8 OLI/TIRS images were processed to measure the land surface temperature (LST) and soil moisture index (SMI). Maps for the normalized difference moisture index (NDMI), normalized difference vegetation index (NDVI), and leaf area index (LAI), as well as yield maps, were developed from Sentinel-2 satellite images. The drought frequency was calculated from the classification of droughts utilizing the SPI. The results of this study show that the drought frequency for the Sylhet station was 38.46% for near-normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station demonstrated frequencies of 28.21%, 41.02%, and 30.77% for near-normal, normal, and moderately dry months, respectively. The correlation coefficients between the SMI and NDMI were 0.84, 0.77, and 0.79 for the drought periods of 2018–2019, 2019–2020 and 2020–2021, respectively, indicating a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought stress in tea estates demonstrate that 61%, 60%, and 60% of estates in the study area had lower yields than the actual yield during the drought period, which accounted for 7.72%, 11.92%, and 12.52% yield losses in 2018, 2019, and 2020, respectively. This research suggests that satellite remote sensing with the SPI could be a valuable tool for land use planners, policy makers, and scientists to measure drought stress in tea estates.


2021 ◽  
Vol 13 (7) ◽  
pp. 1340
Author(s):  
Shuailong Feng ◽  
Shuguang Liu ◽  
Lei Jing ◽  
Yu Zhu ◽  
Wende Yan ◽  
...  

Highways provide key social and economic functions but generate a wide range of environmental consequences that are poorly quantified and understood. Here, we developed a before–during–after control-impact remote sensing (BDACI-RS) approach to quantify the spatial and temporal changes of environmental impacts during and after the construction of the Wujing Highway in China using three buffer zones (0–100 m, 100–500 m, and 500–1000 m). Results showed that land cover composition experienced large changes in the 0–100 m and 100–500 m buffers while that in the 500–1000 m buffer was relatively stable. Vegetation and moisture conditions, indicated by the normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI), respectively, demonstrated obvious degradation–recovery trends in the 0–100 m and 100–500 m buffers, while land surface temperature (LST) experienced a progressive increase. The maximal relative changes as annual means of NDVI, NDMI, and LST were about −40%, −60%, and 12%, respectively, in the 0–100m buffer. Although the mean values of NDVI, NDMI, and LST in the 500–1000 m buffer remained relatively stable during the study period, their spatial variabilities increased significantly after highway construction. An integrated environment quality index (EQI) showed that the environmental impact of the highway manifested the most in its close proximity and faded away with distance. Our results showed that the effect distance of the highway was at least 1000 m, demonstrated from the spatial changes of the indicators (both mean and spatial variability). The approach proposed in this study can be readily applied to other regions to quantify the spatial and temporal changes of disturbances of highway systems and subsequent recovery.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2020 ◽  
Vol 12 (24) ◽  
pp. 4181
Author(s):  
Kunlun Xiang ◽  
Wenping Yuan ◽  
Liwen Wang ◽  
Yujiao Deng

Accurate spatial information about irrigation is crucial to a variety of applications, such as water resources management, water exchange between the land surface and atmosphere, climate change, hydrological cycle, food security, and agricultural planning. Our study proposes a new method for extracting cropland irrigation information using statistical data, mean annual precipitation and Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type data and surface reflectance data. The approach is based on comparing the land surface water index (LSWI) of cropland pixels to that of adjacent forest pixels with similar normalized difference vegetation index (NDVI). In our study, we validated the approach over mainland China with 612 reference samples (231 irrigated and 381 non-irrigated) and found the accuracy of 62.09%. Validation with statistical data also showed that our method explained 86.67 and 58.87% of the spatial variation in irrigated area at the provincial and prefecture levels, respectively. We further compared our new map to existing datasets of FAO/UF, IWMI, Zhu and statistical data, and found a good agreement with the irrigated area distribution from Zhu’s dataset. Results show that our method is an effective method apply to mapping irrigated regions and monitoring their yearly changes. Because the method does not depend on training samples, it can be easily repeated to other regions.


2021 ◽  
Vol 13 (8) ◽  
pp. 1516
Author(s):  
Boyang Li ◽  
Yaokui Cui ◽  
Xiaozhuang Geng ◽  
Huan Li

Evapotranspiration (ET) of soil-vegetation system is the main process of the water and energy exchange between the atmosphere and the land surface. Spatio-temporal continuous ET is vitally important to agriculture and ecological applications. Surface temperature and vegetation index (Ts-VI) triangle ET model based on remote sensing land surface temperature (LST) is widely used to monitor the land surface ET. However, a large number of missing data caused by the presence of clouds always reduces the availability of the main parameter LST, thus making the remote sensing-based ET estimation unavailable. In this paper, a method to improve the availability of ET estimates from Ts-VI model is proposed. Firstly, continuous LST product of the time series is obtained using a reconstruction algorithm, and then, the reconstructed LST is applied to the estimate ET using the Ts-VI model. The validation in the Heihe River Basin from 2009 to 2011 showed that the availability of ET estimates is improved from 25 days per year (d/yr) to 141 d/yr. Compared with the in situ data, a very good performance of the estimated ET is found with RMSE 1.23 mm/day and R2 0.6257 at point scale and RMSE 0.32 mm/day and R2 0.8556 at regional scale. This will improve the understanding of the water and energy exchange between the atmosphere and the land surface, especially under cloudy conditions.


2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


Sign in / Sign up

Export Citation Format

Share Document