Synthesis and preliminary anti-inflammatory evaluation of xanthone derivatives

2018 ◽  
Vol 24 (4) ◽  
pp. 231-236 ◽  
Author(s):  
Dorota Żelaszczyk ◽  
Anna Lipkowska ◽  
Natalia Szkaradek ◽  
Karolina Słoczyńska ◽  
Agnieszka Gunia-Krzyżak ◽  
...  

AbstractXanthone derivatives of acetic, propionic and 2-methylpropionic acids were synthesized and assayed for their anti-inflammatory, analgesic and ulcerogenic activities. Compound 8 causes a dose-dependent diminution of paw edema (up to 61%) in the carrageenan model and at the highest tested dose reduces mechanical hyperalgesia in the Randall-Selitto test more effectively than the reference compound (~75% and ~32%, respectively). It shows high in vitro metabolic stability (Clint=12.5 μL/mg/min, t1/2=138.6 min) in the rat liver microsomes. None of the studied xanthone derivatives are ulcerogenic. The results of the present study suggest that compound 8 can be of interest in the future for the search for antinociceptive and antiedematous agents devoid of ulcerogenic effect.

2021 ◽  
Author(s):  
Nazma Shaheen ◽  
Afiatul Azam ◽  
Amlan Ganguly ◽  
Saeed Anwar ◽  
Md Sorwer Alam Parvez ◽  
...  

Black cumin (Nigella sativa) is a widely used ingredient of traditional medicine for its broad-spectrum pharmacological actions, including anti-allergic, bronchial asthma, and anti-inflammatory properties. We sought to evaluate BC extracts' efficacy for their anti-allergic and anti-inflammatory properties using a comprehensive in vitro, in vivo, and silico experimental setup. To investigate whether BC extract has anti-inflammatory, anti-allergic, and analgesic therapeutic potentials in vitro and in vivo. The activity of BC was assessed through anti-allergic activity on rat basophilic leukemia-2H3 cell line, anti-inflammatory activity on J774.1A cell line, anti-inflammatory activity by carrageenan-induced rat paw edema, analgesic activity by acetic acid-induced writhing test, and ingenuity analysis of the BC extracts in inflammation control. BC exerted potent anti-allergic activity by inhibiting antigen-induced degranulation. An anti-inflammatory effect is shown by inhibiting TNF-α pro-duction. The acetic acid-induced writhing test shown a dose-dependent reduction of writhing number following BC administration. Rat paw edema test shown the dose-dependent reduction of paw edema volume following BC administration. Ingenuity Pathway Analysis (IPA) suggested BC extracts containing ferulic acid, p-coumaric acid, kaempferol, and quercetin can inhibit inflammation. This study suggests that bioactive compounds in BC extract act as an anti-allergic and anti-inflammatory agent by regulating several downstream and upstream inflammation pathways.


Author(s):  
Dmytro Кorobko ◽  
Dimitra J. Hadjipavlou-litina ◽  
Liliya ` Logoyda

Objective: The objective of this study was to synthesize methyl 1-(1,3-dimethyl-2,6-dioxo-7-arylalkyl-(alkenyl-)-2,3,6,7-tetrahydro-1H-purin-8-yl)- 5-(4-methyl-(methoxy-, chloro-)phenyl)-1H-pyrazole-3-carboxylates and studying their antioxidant and anti-inflammatory properties by in vitro methods.Methods: New derivatives of 1,3-dimethylxanthine with pyrazole at position 8 were synthesized by the interaction of 8-bromotheophylline with arylalkyl-(alkenyl) halides, hydrazine hydrate, and methyl 4-(4-R)-2,4-dioxobutanoate. For most obtained compounds, antioxidant activity (by 2,2-diphenyl-1-picrylhydrazyl and 2,2’-azobis(2-amidinopropane) dihydrochloride) and anti-inflammatory (by Soybean LOX inhibition) activity was investigated.Result: The most effect on free radical oxidation processes was recorded for substances with a phenylalyl radical at position 7 of the molecules (10, 13, and 16). In the activity of inhibition of peroxidation of lipids (89–92%), they predominate Trolox (88%). Their IC50 indices for LOX inhibition are 15.0, 17.5, and 27.5 μM, respectively, but less than the nordihydroguaretic acid reference compound used.Conclusion: The antioxidant and anti-inflammatory properties of a series of synthesized 7,8-disubstituted theophylline containing the pyrazole cycle have been studied using modern in vitro research methods. The prospect of conducting further synthetic and pharmacological studies for compounds with phenylalyl radical in the 7 positions of their molecules is shown.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 776
Author(s):  
Sin-Eun Kim ◽  
Seung-Bae Ji ◽  
Euihyeon Kim ◽  
Minseon Jeong ◽  
Jina Kim ◽  
...  

DN203368 ((E)-3-[1-(4-[4-isopropylpiperazine-1-yl]phenyl) 3-methyl-2-phenylbut-1-en-1-yl] phenol) is a 4-hydroxy tamoxifen analog that is a dual inverse agonist of estrogen-related receptor β/γ (ERRβ/γ). ERRγ is an orphan nuclear receptor that plays an important role in development and homeostasis and holds potential as a novel therapeutic target in metabolic diseases such as diabetes mellitus, obesity, and cancer. ERRβ is also one of the orphan nuclear receptors critical for many biological processes, such as development. We investigated the in vitro metabolism of DN203368 by conventional and metabolomic approaches using high-resolution mass spectrometry. The compound (100 μM) was incubated with rat and human liver microsomes in the presence of NADPH. In the metabolomic approach, the m/z value and retention time information obtained from the sample and heat-inactivated control group were statistically evaluated using principal component analysis and orthogonal partial least-squares discriminant analysis. Significant features responsible for group separation were then identified using tandem mass spectra. Seven metabolites of DN203368 were identified in rat liver microsomes and the metabolic pathways include hydroxylation (M1-3), N-oxidation (M4), N-deisopropylation (M5), N,N-dealkylation (M6), and oxidation and dehydrogenation (M7). Only five metabolites (M2, M3, and M5-M7) were detected in human liver microsomes. In the conventional approach using extracted ion monitoring for values of mass increase or decrease by known metabolic reactions, only five metabolites (M1-M5) were found in rat liver microsomes, whereas three metabolites (M2, M3, and M5) were found in human liver microsomes. This study revealed that nontargeted metabolomics combined with high-resolution mass spectrometry and multivariate analysis could be a more efficient tool for drug metabolite identification than the conventional approach. These results might also be useful for understanding the pharmacokinetics and metabolism of DN203368 in animals and humans.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


Author(s):  
Abhishek Chatterjee ◽  
Dileep Singh Baghel ◽  
Bimlesh Kumar ◽  
Saurabh Singh ◽  
Narendra Kumar Pandey ◽  
...  

Objective: The aims of the present investigation were to develop the herbal and/or herbomineral formulations of Hinguleswara rasa and to compare their anti-inflammatory and antioxidant activities, in vitro, with that of standard drug samples.Methods: This study was an interventional investigation in three samples: In the first sample, Hinguleswara rasa (HR1) was prepared as per methodology described in Rasatarangini using Shuddha Hingula (10 g), Shuddha Vatsanabha (10 g), and Pippali (10 g). In the second and third sample, respectively, Hinguleswara rasa was prepared by replacing Shuddha Hingula with Kajjali where Kajjali made from Hingulotha parada and Sodhita parada constitutes two varieties of Hinguleswara rasa, i.e. HR2 and HR3. In vitro antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl, and the absorbance was recorded at 517 nm. For evaluating the in vitro anti-inflammatory studies, the inhibition of albumin denaturation technique was performed.Results: The results showed that the formulation of Hinguleswara rasa has shown dose-dependent activity which was observed in 100 μg concentration. HR1, HR2, and HR3 showed 36.11, 17.22, and 16.11% radical scavenging activity.Conclusion: It could be concluded that the changes made in the formulations did not affect the in vitro anti-inflammatory and antioxidant effects of the herbomineral formulations.


1983 ◽  
Vol 61 (6) ◽  
pp. 649-652 ◽  
Author(s):  
G. Labrecquf ◽  
P. M. Bélanger ◽  
F. M. Doré

Temporal variations in the anti-inflammatory action and in the ulcerogenic and lethal effects of phenylbutazone were studied in rats. The results indicate that small doses of the drug produced a larger reduction of paw edema in the morning than in the evening. At 0900, doses of 10, 30, and 100 mg/kg of phenylbutazone reduced the carrageenan-induced paw edema by 23, 44, and 66%, respectively. At 2000, the same doses of the drug decreased the paw edema by 9, 22, and 62%, respectively. No circadian variation was observed in the ulcerogenic effect of phenylbutazone. The mean lethal dose (LD50) of the drug was larger in the morning than in the evening and the values obtained were 710 ± 24 (SE) mg/kg at 0900 in comparison to 525 ± 38 (SE) mg/kg at 2000.


Fitoterapia ◽  
2011 ◽  
Vol 82 (8) ◽  
pp. 1222-1230 ◽  
Author(s):  
Wei Zhou ◽  
Liu-qing Di ◽  
Jin-jun Shan ◽  
Xiao-lin Bi ◽  
Le-tian Chen ◽  
...  

2008 ◽  
Vol 46 (5) ◽  
pp. 419-423 ◽  
Author(s):  
R. Zhang ◽  
C.-h. Liu ◽  
T.-l. Huang ◽  
N.-s. Wang ◽  
S.-q. Mi

Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


Sign in / Sign up

Export Citation Format

Share Document