Complete plastid genome sequences of three tropical Alseodaphne trees in the family Lauraceae

Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 337-345 ◽  
Author(s):  
Yu Song ◽  
Xin Yao ◽  
Bing Liu ◽  
Yunhong Tan ◽  
Richard T. Corlett

AbstractAlseodaphneis a genus of timber trees (ca. 40 spp.) belonging to thePerseagroup of the Lauraceae. It is widely distributed in tropical Asia, but is often confused withDehaasiaandNothaphoebe, and the systematics of the genus is unclear. Here, the complete chloroplast genome sequences ofA. semecarpifoliawill be reported, the type species ofAlseodaphne, and two China-endemic species,A. gracilisandA. huanglianshanensis. The three plastomes were 153 051 bp, 153 099 bp and 153 070 bp, respectively. Comparative genomic analyses indicate that the threeAlseodaphneplastomes have similar genome size and those are very different with previously published plastomes of Lauraceae in length. The length difference is directly caused by inverted repeats expansion/contraction. Four highly variable loci includingpsbD-trnM,ndhF-rpl32,rpl32-trnLandycf1among the threeAlseodaphnespecies were identified as useful plastid candidate barcodes forAlseodaphneand Lauraceae species. Phylogenetic analyses based on 12 complete plastomes of Lauraceae species confirm a monophyleticPerseagroup comprising species ofAlseodaphne,Phoebe,PerseaandMachilus.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6032 ◽  
Author(s):  
Zhenyu Zhao ◽  
Xin Wang ◽  
Yi Yu ◽  
Subo Yuan ◽  
Dan Jiang ◽  
...  

Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3203-3215 ◽  
Author(s):  
Chantal Campbell ◽  
Mobolaji Adeolu ◽  
Radhey S. Gupta

The class Negativicutes is currently divided into one order and two families on the basis of 16S rRNA gene sequence phylogenies. We report here comprehensive comparative genomic analyses of the sequenced members of the class Negativicutes to demarcate its different evolutionary groups in molecular terms, independently of phylogenetic trees. Our comparative genomic analyses have identified 14 conserved signature indels (CSIs) and 48 conserved signature proteins (CSPs) that either are specific for the entire class or differentiate four main groups within the class. Two CSIs and nine CSPs are shared uniquely by all or most members of the class Negativicutes, distinguishing this class from all other sequenced members of the phylum Firmicutes. Four other CSIs and six CSPs were specific characteristics of the family Acidaminococcaceae, two CSIs and four CSPs were uniquely present in the family Veillonellaceae, six CSIs and eight CSPs were found only in Selenomonas and related genera, and 17 CSPs were identified uniquely in Sporomusa and related genera. Four additional CSPs support a pairing of the groups containing the genera Selenomonas and Sporomusa. We also report detailed phylogenetic analyses for the Negativicutes based on core protein sequences and 16S rRNA gene sequences, which strongly support the four main groups identified by CSIs and by CSPs. Based on the results from different lines of investigation, we propose a division of the class Negativicutes into an emended order Selenomonadales containing the new families Selenomonadaceae fam. nov. and Sporomusaceae fam. nov. and two new orders, Acidaminococcales ord. nov. and Veillonellales ord. nov., respectively containing the families Acidaminococcaceae and Veillonellaceae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sun-Jung Kwon ◽  
Sohrab Bodaghi ◽  
Tyler Dang ◽  
Kiran R. Gadhave ◽  
Thien Ho ◽  
...  

Citrus yellow-vein disease (CYVD) was first reported in California in 1957. We now report that CYVD is associated with a virus-like agent, provisionally named citrus yellow-vein associated virus (CYVaV). The CYVaV RNA genome has 2,692 nucleotides and codes for two discernable open reading frames (ORFs). ORF1 encodes a protein of 190 amino acid (aa) whereas ORF2 is presumably generated by a −1 ribosomal frameshifting event just upstream of the ORF1 termination signal. The frameshift product (717 aa) encodes the RNA-dependent RNA polymerase (RdRp). Phylogenetic analyses suggest that CYVaV is closely related to unclassified virus-like RNAs in the family Tombusviridae. Bio-indexing and RNA-seq experiments indicate that CYVaV can induce yellow vein symptoms independently of known citrus viruses or viroids.


Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2186-2193 ◽  
Author(s):  
Mareike Wenning ◽  
Franziska Breitenwieser ◽  
Christopher Huptas ◽  
Etienne Doll ◽  
Benedikt Bächler ◽  
...  

Eight facultatively anaerobic rod-shaped bacteria were isolated from raw milk and two other dairy products. Results of phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates are placed in a distinct lineage within the family Propionibacteriaceae with Propioniciclava sinopodophylli and Propioniciclava tarda as the closest relatives (94.6 and 93.5 % similarity, respectively). The cell-wall peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid and was of the A1γ type (meso-DAP-direct). The major cellular fatty acid was anteiso-C15 : 0 and the major polar lipids were diphosphatidylglycerol, phosphatidyglycerol and three unidentified glycolipids. The quinone system contained predominantly menaquinone MK-9(H4). The G+C content of the genomic DNA of strain VG341T was 67.7 mol%. The whole-cell sugar pattern contained ribose, rhamnose, arabinose and galactose. On the basis of phenotypic and genetic data, eight strains (VG341T, WS4684, WS4769, WS 4882, WS4883, WS4901, WS4902 and WS4904) are proposed to be classified as members of a novel species in a new genus of the family Propionibacteriaceae , for which the name Brevilactibacter flavus gen. nov., sp. nov. is proposed. The type strain is VG341T (=WS4900T=DSM 100885T=LMG 29089T) and seven additional strains are WS4684, WS4769, WS4882, WS4883, WS4901, WS4902 and WS4904. Furthermore, we propose the reclassification of P. sinopodophylli as Brevilactibacter sinopodophylli comb. nov.


MycoKeys ◽  
2020 ◽  
Vol 74 ◽  
pp. 17-74
Author(s):  
Martina Réblová ◽  
Jana Nekvindová ◽  
Jacques Fournier ◽  
Andrew N. Miller

The Chaetosphaeriaceae are a diverse group of pigmented, predominantly phialidic hyphomycetes comprised of several holomorphic genera including Chaetosphaeria, the most prominent genus of the family. Although the morphology of the teleomorphs of the majority of Chaetosphaeria is rather uniform, their associated anamorphs primarily exhibit the variability and evolutionary change observed in the genus. An exception from the morphological monotony among Chaetosphaeria species is a group characterised by scolecosporous, hyaline to light pink, multiseptate, asymmetrical ascospores and a unique three-layered ascomatal wall. Paragaeumannomyces sphaerocellularis, the type species of the genus, exhibits these morphological traits and is compared with similar Chaetosphaeria with craspedodidymum- and chloridium-like synanamorphs. Morphological comparison and phylogenetic analyses of the combined ITS-28S sequences of 35 isolates and vouchers with these characteristics revealed a strongly-supported, morphologically well-delimited clade in the Chaetosphaeriaceae containing 16 species. The generic name Paragaeumannomyces is applied to this monophyletic clade; eight new combinations and five new species, i.e. P. abietinussp. nov., P. eleganssp. nov., P. granulatussp. nov., P. sabinianussp. nov. and P. smokiensissp. nov., are proposed. A key to Paragaeumannomyces is provided. Using morphology, cultivation studies and phylogenetic analyses of ITS and 28S rDNA, two additional new species from freshwater and terrestrial habitats, Codinaea paniculatasp. nov. and Striatosphaeria castaneasp. nov., are described in the family. A codinaea-like anamorph of S. castanea forms conidia with setulae at each end in axenic culture; this feature expands the known morphology of Striatosphaeria. A chaetosphaeria-like teleomorph is experimentally linked to Dendrophoma cytisporoides, a sporodochial hyphomycete and type species of Dendrophoma, for the first time.


Author(s):  
Renju Liu ◽  
Qiliang Lai ◽  
Li Gu ◽  
Peisheng Yan ◽  
Zongze Shao

A novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).


Sign in / Sign up

Export Citation Format

Share Document