Activation of glucose with Fenton’s reagent: chemical structures of activated products and their reaction efficacy toward cellulosic material

Holzforschung ◽  
2019 ◽  
Vol 73 (6) ◽  
pp. 579-587
Author(s):  
Wenjun Guo ◽  
Zefang Xiao ◽  
Lian Tang ◽  
Zhijun Zhang ◽  
Yonggui Wang ◽  
...  

AbstractThe release of harmful volatiles, such as formaldehyde, is a major issue of the chemical modification of wood that limits the utilization of the modified wood in indoor environment. In this study, glucose (Glc) was activated with Fenton’s reagent under various conditions and the chemical structure of the activated Glc was characterized. Also, the reactivity of the activated Glc toward filter paper as a wood model was evaluated. The results show that the H2O2concentration controlled the activation ratio of Glc. Additionally, the Fe(II) concentration and activation temperature determined mainly the oxidation reaction rate. The Fenton reaction in an acidic solution resulted in higher activation efficacy of Glc and better fixation in the filter paper, compared to the reaction in an alkaline solution. The Glc cannot be fixed in the filter paper, but the activated Glc exhibited a fixation ratio of up to 48.2% due to the formation of carboxyl and aldehyde groups, as evidenced by Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). It was demonstrated that activation of Glc with the Fenton’s reagent is a feasible and eco-friendly approach and the activated products have a high potential for wood modification.

2011 ◽  
Vol 27 (10) ◽  
pp. 934-944 ◽  
Author(s):  
Ying-Shih Ma

Attempts were made in this study to examine the efficiency of Fenton’s reagent with different dosing processes and H2O2 and Fe2+ concentrations for the treatment of carbofuran wastewater. Carbofuran degradation, total organic carbon (TOC) removal and H2O2 consumption were determined during the experiments. Increases in H2O2 and Fe2+ concentrations led to an increase in the degradation of carbofuran. Almost 100% of carbofuran could be degraded at pH 3, 120 mg L-1 H2O2, 24 mg L-1 Fe2+ and 30 minutes reaction time; removals of TOC were among 48.8%–53.3% under different dosing processes. A continuous dosing process was beneficial to improve the removal of TOC by Fenton’s reagent. Rate constants of carbofuran degradation could be calculated by the first-order kinetics; increase in the Fenton’s reagent generally increased the rate constants. Gas chromatography-mass spectrometry analysis found five degradation products by hydroxyl radicals attack. Thus, this study might offer an effective dosing way for carbofuran wastewater treatment by Fenton’s reagent.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1555
Author(s):  
Enas E. Eltamany ◽  
Usama Ramadan Abdelmohsen ◽  
Dina M. Hal ◽  
Amany K. Ibrahim ◽  
Hashim A. Hassanean ◽  
...  

Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC50 of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2–p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents.


2000 ◽  
Vol 9 (4) ◽  
pp. 331-345 ◽  
Author(s):  
Katherine R. Weeks ◽  
Clifford J. Bruell ◽  
Nihar R. Mohanty

Tetrahedron ◽  
1963 ◽  
Vol 19 (11) ◽  
pp. 1705-1710 ◽  
Author(s):  
G.J. Moody

1982 ◽  
Vol 104 (13) ◽  
pp. 3783-3783
Author(s):  
Cheves Walling ◽  
Kalyani Amarnath ◽  
Curt Campbell

2021 ◽  
Vol 25 (7) ◽  
pp. 8-12
Author(s):  
P. Rajendran ◽  
K. Geethu ◽  
P. Bashpa ◽  
K. Bijudas

Congo red is a toxic azo dye which is used extensively in industries like textile, paper, pulp and paper. Very high amount of Congo red from these industrial sources is discharged into natural water bodies resulting environmental pollution. The present work reports the kinetics and mechanism of oxidative decomposition of Congo red by Fenton’s reagent in homogeneous medium and also under ultra violet light irradiation. Kinetic parameters like effect of [Fe2+], [H2O2], [Congo red] and temperature on the decomposition of Congo red were studied. The reaction is found to be fractional order with [Fe2+] and first order with [H2O2] and [Congo red]. The rate of oxidative decomposition of Congo red by Fenton’ reagent showed a rapid increase of three times when irradiated with ultra violet radiation and completion of reaction occurred within 5-6 minute. Various thermodynamic variables were determined and the presence of isosbestic points on sequential scanning of oxidation kinetics proves that the reaction is very smooth, spontaneous and endothermic. A suitable mechanism is suggested based on the experimental results obtained.


1997 ◽  
Vol 36 (12) ◽  
pp. 215-222 ◽  
Author(s):  
Shyh-Fang Kang ◽  
Huey-Min Chang

This study was designed to use both artificial and real textile secondary effluents to evaluate (1) the COD and color removal efficiencies for ferrous coagulation and Fenton's coagulation, and (2) the feasibility of using hydrogen peroxide to improve ferrous coagulation to meet more stringent effluent standards. The results indicate that the optimum pHs for both ferrous coagulation and Fenton's preoxidation processes range between 8.0–10 and 3.0–5.0, respectively. The rate for color removal is faster than that for COD removal in the Fenton's preoxidation process. The removals of COD and color are mainly accomplished during Fenton's preoxidation step. The ratio of COD removal for Fenton's coagulation versus ferrous coagulation, given the same ferrous dosage, ranges from 1.4 to 2.3, and it ranges from 1.1 to 1.9 for color removal, using two effluent samples. Therefore, using hydrogen peroxide can enhance the ferrous coagulation, and this ensures more stringent effluent standards of COD and color are met.


2004 ◽  
Vol 50 (2) ◽  
pp. 83-90 ◽  
Author(s):  
A. Durán Moreno ◽  
B.A. Frontana-Uribe ◽  
R.M. Ramírez Zamora

The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.


Sign in / Sign up

Export Citation Format

Share Document